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Preface

This is an introductory textbook on optimization—that is, on mathematical program-
ming—intended for undergraduates and graduate students in management or
engineering. The principal coverage includes linear programming, nonlinear program-
ming, integer programming, and heuristic programming; and the emphasis is on model
building using Excel and Solver.

The emphasis on model building (rather than algorithms) is one of the features
that makes this book distinctive. Most textbooks devote more space to algorithmic
details than to formulation principles. These days, however, it is not necessary to
know a great deal about algorithms in order to apply optimization tools, especially
when relying on the spreadsheet as a solution platform.

The emphasis on spreadsheets is another feature that makes this book distinctive.
Few textbooks devoted to optimization pay much attention to spreadsheet implemen-
tation of optimization principles, and most books that emphasize model building
ignore spreadsheets entirely. Thus, someone looking for a spreadsheet-based treatment
would otherwise have to use a textbook that was designed for some other purpose, like
a survey of management science topics, rather than one devoted to optimization.

WHY MODEL BUILDING?

The model building emphasis is an attempt to be realistic about what business and
engineering students need most when learning about optimization. At an introductory
level, the most practical and motivating theme is the wide applicability of optimization
tools. To apply optimization effectively, the student needs more than a brief exposure
to a series of numerical examples, which is the way that most mathematical program-
ming books treat applications. With a systematic modeling emphasis, the student can
begin to see the basic structures that appear in optimization models and as a result,
develop an appreciation for potential applications well beyond the examples presented
in the text.

Formulating optimization models is both an art and a science, and this book pays
attention to both. The art can be refined with practice, especially supervised practice,
just the way a student would learn sculpture or painting. The science is reflected in the
structure that organizes the topics in this book. For example, there are several distinct
problem types that lend themselves to linear programming formulations, and it makes
sense to study these types systematically. In that spirit, the book builds a library of
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templates against which new problems can be compared. Analogous structures are
developed for the presentation of other topics as well.

WHY SPREADSHEETS?

Now that optimization tools have been made available with spreadsheets (i.e., with
Excel), every spreadsheet user is potentially a practitioner of optimization techniques.
No longer do practitioners of optimization constitute an elite, highly trained group of
quantitative specialists who are well versed in computer software, or their former pro-
fessor’s own code. Now, anyone who builds a spreadsheet model can call on optim-
ization techniques, and can do so without the need to learn about specialized software.
The basic optimization tool, in the form of Excel’s Standard Solver, is now as readily
available as the spellchecker. So why not raise modeling ability up to the level of soft-
ware access? Let’s not pretend that most users of optimization tools will be inclined to
shop around for matrix generators and industrial-strength “solvers” if they want to pro-
duce numbers. More likely, they will be drawn to Excel.

Students using this book can take advantage of an even more powerful software
package called Risk Solver Platform (RSP) that was developed by the creators of
Excel’s built-in Standard Solver. The educational version of RSP is available at no
cost (see Appendix 1), and it introduces students to the capabilities of a sophisticated
optimization package. Although this book is not organized as a user’s manual, it
nevertheless provides most of the information the student needs to become a sophis-
ticated user of RSP.

WHAT’S SPECIAL?

Mathematical programming techniques have been invented and applied for more than
half a century, so by now they represent a relatively mature area of applied mathemat-
ics. There is not much new that can be said in an introductory textbook regarding the
underlying concepts. The innovations in this book can be found instead in the delivery
and elaboration of certain topics, making them accessible and understandable to the
novice. The most distinctive of these features are as follows.

† The major topics are not illustrated merely with a series of numerical examples.
Instead, the chapters introduce a classification for the problem types. An early
example is the organization of basic linear programming models in Chapter 2
along the lines of allocation, covering, and blending models. This classification
strategy, which extends throughout the book, helps the student to see beyond
the particular examples to the breadth of possible applications.

† Network models are a special case of linear programming models. If they are
singled out for special treatment at all in optimization books, they are defined
by a strict requirement for mass balance. Here, in Chapter 3, network models
are presented in a broader framework, which allows for a more general form

xii Preface



of mass balance, thereby extending the reader’s capability for recognizing and
analyzing network problems.

† Interest has been growing in Data Envelopment Analysis (DEA), a special kind
of linear programming application. Although some books illustrate DEA with a
single example, this book provides a systematic introduction to the topic by
providing a patient, comprehensive treatment in Chapter 5.

† Analysis of an optimization problem does not end when the computer displays
the numbers in an optimal solution. Finding a solution must be followed with a
meaningful interpretation of the results, especially if the optimization model
was built to serve a client. An important framework for interpreting linear pro-
gramming solutions is the identification of patterns, which is discussed in detail
in Chapter 4.

† The topic of heuristic programming has evolved somewhat outside the field of
optimization. Although a variety of specialized heuristic approaches have been
developed, generic software has seldom been available. Now, however, the
advent of the evolutionary solver in Solver and RSP brings heuristic program-
ming alongside linear and nonlinear programming as a generic software tool for
pursuing optimal decisions. The evolutionary solver is covered in Chapter 9.

† The topic of stochastic programming has been of interest to researchers for
quite a while but promises to become a factor in applications now that the
latest versions of RSP contain such capabilities as the solution of stochastic
programs with recourse. Appendix 4 provides an introduction to this topic
area and a glimpse of how to use RSP to solve problems of this type.

Beyond these specific innovations, as this book goes to print, there is no optim-
ization textbook exclusively devoted to model building rather than algorithms that
relies on the spreadsheet platform. The reliance on spreadsheets and on a model-
building emphasis is the most effective way to bring optimization capability to the
many users of Excel.

THE AUDIENCE

This book is aimed at management students and secondarily engineering students. In
business curricula, a course focused on optimization is viable in two situations. If there
is no required introduction to Management Science at all, then the treatment of
Management Science at the elective level is probably best done with specialized
courses on deterministic and probabilistic models. This book is an ideal text for a
first course dedicated to deterministic models. If instead there is a required introduc-
tion to Management Science, chances are that the coverage of optimization glides
by so quickly that even the motivated student is left wanting more detail, more con-
cepts and more practice. This book is also well suited to a second-level course that
delves specifically into mathematical programming applications.

In engineering curricula, it is still typical to find a full course on optimization,
usually as the first course on (deterministic) modeling. Even in this setting, though,
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traditional textbooks tend to leave it to the student to seek out spreadsheet approaches
to the topic, while covering the theory and perhaps encouraging students to write code
for algorithms. This book will capture the energies of students by covering what they
would be spending most of their time doing in the real world—building and solving
optimization problems on spreadsheets.

This book has been developed around the syllabi of two courses at Dartmouth
College that have been delivered for several years. One course is a second-year elective
for MBA students who have had a brief, previous exposure to optimization during a
required core course that surveyed other analytic topics. A second course is a required
course for Engineering Management students in a graduate program at the interface
between business and engineering. These students have had no formal exposure to
spreadsheet modeling, although some may previously have taken a survey course in
Operations Research. Thus, the book is appropriate for students who are about to
study optimization with only a brief, or even nonexistent exposure to the subject.
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Chapter 1

Introduction to Spreadsheet
Models for Optimization

This is a book about optimization with an emphasis on building models and using
spreadsheets. Each facet of this theme—models, spreadsheets, and optimization—
has a role in defining the emphasis of our coverage.

A model is a simplified representation of a situation or problem. Models attempt to
capture the essential features of a complicated situation so that it can be studied and
understood more completely. In the worlds of business, engineering, and science,
models aim to improve our understanding of practical situations. Models can be
built with tangible materials, or words, or mathematical symbols and expressions. A
mathematical model is a model that is constructed—and also analyzed—using math-
ematics. In this book, we focus on mathematical models. Moreover, we work with
decision models, or models that contain representations of decisions. The term also
refers to models that support decision-making activities.

A spreadsheet is a row-and-column layout of text, numerical data, and logical
information. The spreadsheet version of a model contains the model’s elements,
linked together by specific logical information. Electronic spreadsheets, like those
built using Microsoft Excelw, have become familiar tools in the business, engineering,
and scientific worlds. Spreadsheets are relatively easy to understand, and people often
rely on spreadsheets to communicate their analyses. In this book, we focus on the use
of spreadsheets to represent and analyze mathematical models.

This text is written for an audience that already has some familiarity with Excel.
Our coverage assumes a level of facility with Excel comparable to a beginner’s level.
Someone who has used other people’s spreadsheets and built simple spreadsheets for
some purpose—either personal or organizational—has probably developed this skill
level. Box 1.1 describes the Excel skill level assumed. Readers without this level of
background are encouraged to first work through some introductory materials, such
as the books by McFedries (1) and Reding and Wermers (2).

Optimization is the process of finding the best values of the variables for a particu-
lar criterion or, in our context, the best decisions for a particular measure of perform-
ance. The elements of an optimization problem are a set of decisions, a criterion, and
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perhaps a set of required conditions, or constraints, that the decisions must satisfy.
These elements lend themselves to description in a mathematical model. The term
optimization sometimes refers specifically to a procedure that is implemented by soft-
ware. However, in this book, we expand that perspective to include the model-building
process as well as the process of finding the best decisions.

Not all mathematical models are optimization models. Some models merely
describe the logical relationship between inputs and outputs. Optimization models
are a special kind of model in which the purpose is to find the best value of a particular
output measure and the choices that produce it. Optimization problems abound in the
real world, and if we’re at all ambitious or curious, we often find ourselves seeking
solutions to those problems. Business firms are very interested in optimization because
making good decisions helps a firm run efficiently, perform profitably, and compete
effectively. In this book, we focus on optimization problems expressed in the form
of spreadsheet models and solved using a spreadsheet-based approach.

1.1. ELEMENTS OF A MODEL

To restate our premise, we are interested in mathematical models. Specifically, we are
interested in two forms—algebraic and spreadsheet models. In the former, we use
algebraic notation to represent elements and relationships, and in the latter, we use
spreadsheet entries and structure. For example, in an algebraic statement, we might
use the variable x to represent a quantitative decision, and we might use some function
f (x) to represent the measure of performance that results from choosing decision x.
Then we might adopt the letter z to represent a criterion for decision making and con-
struct the equation z ¼ f (x) to guide the choice of a decision. Algebra is the basic
language of analysis largely because it is precise and compact.

As an introductory modeling example, let’s consider the price decision in the
scenario of Example 1.1.

BOX 1.1 Excel Skills Assumed as Background for this Book

Navigating in workbooks, worksheets, and windows.
Using the cursor to select cells, rows, columns, and noncontiguous cell ranges.
Entering text and data; copying and pasting; filling down or across.
Formatting cells (number display, alignment, font, border, and protection).
Editing cells (using the formula bar and cell-edit capability [F2]).
Entering formulas and using the function wizard.
Using relative and absolute addresses.
Using range names.
Creating charts and graphs.
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EXAMPLE 1.1 Price, Demand, and Profit

Our firm’s production department has carried out a cost accounting study and found that the unit
cost for one of its main products is $40. Meanwhile, the marketing department has estimated the
relationship between price and sales volume (the so called demand curve for the product) as
follows:

y = 800 − 5x (1.1)

where y represents quarterly demand and x represents the selling price per unit. We wish to deter-
mine a selling price for this product, given the information available. B

In Example 1.1, the decision is the unit price, and the consequence of that
decision is the level of demand. The demand curve in Equation 1.1 expresses the
relationship of demand and price in algebraic terms. Another equation expresses the
calculation of profit contribution, by multiplying the demand y by the unit profit con-
tribution (x – 40) on each item

z = (x − 40)y (1.2)

where z represents our product’s quarterly profit contribution.
We can substitute Equation 1.1 into 1.2 if we want to write z algebraically as a

function of x alone. As a result, we can express the profit contribution as

z = 1000x − 5x2 − 32,000 (1.3)

This step embodies the algebraic principle that simplification is always desirable. Here,
simplification reduces the number of variables in the expression for profit contribution.
Simplification, however, is not necessarily a virtue when we use a spreadsheet model.

Example 1.1, simple as it is, has some important features. First, our model con-
tains three numerical inputs: 40 (the unit cost), –5 (the marginal effect of price on
demand) and 800 (the maximum demand). Numerical inputs such as these are
called parameters. In some models, parameters correspond to raw data, but in many
cases, parameters are summaries drawn from a more primitive data set. They may
also be estimates made by a knowledgeable party, forecasts derived from statistical
analyses, or predictions chosen to reflect a future scenario.

Our model also contains a decision—an unknown quantity yet to be determined.
In traditional algebraic formulations, unknowns are represented as variables.
Quantitative representations of decisions are therefore called decision variables.
The decision variable in our model is the unit price x.

Our model contains the equation that relates demand to price. We can think of
this relationship as part of the model’s logic. In that role, the demand curve prescribes
a relationship between two variables—price and demand—that must always hold.
Thus, in our model, the only admissible values of x and y are those that satisfy
Equation 1.1.

Finally, our model contains a calculation of quarterly profit contribution, which is
the performance measure of interest and a quantity that we wish to maximize. This
output variable measures the consequence of selecting any particular price decision
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in the model. In optimization models, we are concerned with maximizing or minimiz-
ing some measure of performance, expressed as a mathematical function, and we refer
to it as the objective function, or simply the objective.

1.2. SPREADSHEET MODELS

Algebra is an established language that works well for describing problems, but not
always for obtaining solutions. Algebraic solutions tend to occur in formulas, not num-
bers, but numbers most often represent decisions in the practical world. By contrast,
spreadsheets represent a practical language—one that works very effectively with
numbers. Like algebraic models, spreadsheets can be precise and compact, but there
are also complications that are unique to spreadsheets. For example, there is a differ-
ence between form and content in a spreadsheet. Two spreadsheets may look the same
in terms of layout and the numbers displayed on a computer screen, but the underlying
formulas in corresponding cells could differ. Because the information behind the dis-
play can be different even when two spreadsheets have the same on-screen appear-
ance, we can’t always tell the logical content from the form of the display. Another
complication is the lack of a single, well accepted way to build a spreadsheet represen-
tation of a given model. In an optimization model, we want to represent decision vari-
ables, an objective function, and constraints. However, that still leaves a lot of
flexibility in choosing how the logic of a particular model is incorporated into a
spreadsheet. Such flexibility would ordinarily be advantageous if the only use of a
spreadsheet were to help individuals solve problems. However, spreadsheets are per-
haps even more important as vehicles for communication. When we use spreadsheets
in this role, flexibility can sometimes lead to confusion and disrupt the intended
communication.

We will try to mitigate these complications with some design guidelines. For
example, it is helpful to create separate modules in the spreadsheet for decision vari-
ables, objective function, and constraints. To the extent that we follow such guidelines,
we may lose some flexibility in building a spreadsheet model. Moving the design pro-
cess toward standardization will, however, make the content of a spreadsheet more
understandable from its form, so differences between form and content become less
problematic.

With optimization, a spreadsheet model contains the analysis that ultimately pro-
vides decision support. For this reason, the spreadsheet model should be intelligible to
its users, not just to its developer. On some occasions, a spreadsheet might come into
routine use in an organization, even when the developer moves on. New analysts may
inherit the responsibilities associated with the model, so it is vital that they, too, under-
stand how the spreadsheet works. For that matter, the decision maker may also move
on. For the organization to retain the learning that has taken place, successive decision
makers must also understand the spreadsheet. In yet another scenario, the analyst
develops a model for one-time use but then discovers a need to reuse it several
months later in a different context. In such a situation, it’s important that the analyst
understands the original model, lest the passage of time obscure its purpose and
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logic. In all of these cases, the spreadsheet model fills a significant communications
need. Thus, it is important to keep the role of communication in mind while develop-
ing a spreadsheet.

A spreadsheet version of our pricing model might look like the one in Figure 1.1.
This spreadsheet contains a cell (C9) that holds the unit price, a cell (C12) that holds
the level of demand, and a cell (C15) that holds the total profit contribution. Actually,
cell C12 holds Equation 1.1 in the form of the Excel formula ¼C4+C5∗C9. Similarly,
cell C15 holds Equation 1.2 with the formula ¼(C9–C6)∗C12. In cell C9, the unit
price is initially set to $80. For this choice, demand is 400. The quarterly profit con-
tribution is $16,000.

In a spreadsheet model, there is usually no premium on being concise, as there is
when we use algebra. In fact, when conciseness begins to interfere with a model’s
transparency, it becomes undesirable. Thus, in Figure 1.1, the model retains the
demand equation and displays the demand quantity explicitly; we have not tried to
incorporate Equation 1.3. This form allows a user to see how price influences profit con-
tribution through demand because all of these quantities are explicit. Furthermore,
it is straightforward to trace the connection between the three input parameters and
the calculation of profit contribution.

To summarize, our model consists of three parameters and a decision variable,
together with some intermediate calculations, all leading to an objective function
that we want to maximize. In algebraic terms, the model consists of Equations 1.1
and 1.2, with the prescription that we want to maximize Equation 1.2. In spreadsheet
terms, the model consists of the spreadsheet in Figure 1.1, with the prescription that we
want to maximize the value in cell C15.

Figure 1.1. Spreadsheet model for determining price.
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The spreadsheet is organized into four modules: Inputs, Decision, Calculation,
and Outcome, separating different kinds of information. In spreadsheet models, it is
a good idea to separate input data from decisions and decisions from outcome
measures. Intermediate calculations that do not lead directly to the outcome measure
should also be kept separate.

In the spreadsheet model, cell borders and shading draw attention to the decision
(cell C9) and the objective (cell C15) as the two most important elements of the optim-
ization model. No matter how complicated a spreadsheet model may become, we want
the decisions and the objective to be located easily by someone who looks at the
display.

In the spreadsheet of Figure 1.1, the input parameters appear explicitly. It would
not be difficult to skip the Inputs section entirely and express the demand function in
cell C12 with the formula ¼800–5∗C9, or to express the profit contribution in
cell C15 with the formula ¼(C9–40)∗C12. This approach, however, places the
numerical parameters in formulas, so a user would not see them at all when looking
at the spreadsheet. Good practice calls for displaying parameters explicitly in the
spreadsheet, as we have done in Figure 1.1, rather than burying them in formulas.

The basic version of our model, shown in Figure 1.1, is ready for optimization.
But let’s look at an alternative, shown in Figure 1.2. This version contains the four
modules, and the numerical inputs are explicit but placed differently than in
Figure 1.1. The main difference is that demand is treated as a decision variable, and
the demand curve is expressed as an explicit constraint. Specifically, this form of
the model treats both price and demand as variables in cells C9:C10, as if the two
choices could be made arbitrarily. However, the Constraints module describes a
relationship between the two variables in the form of Equation 1.1, which can

Figure 1.2. Alternative spreadsheet model for determining price.
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equivalently be expressed as

y + 5x = 800 (1.4)

We can meet this constraint by forcing cell C13 to equal cell E13, a condition that does
not yet hold in Figure 1.2. Cell C13 contains the formula on the left-hand side of
Equation 1.4, and cell E13 contains a reference to the parameter 800. The equals
sign between them, in cell D13, signifies the nature of the constraint relationship to
someone who is looking at the spreadsheet and trying to understand its logic.
Equation 1.4 collects all the terms involving decision variables on the left-hand
side (in cell C13) and places the constant term on the right-hand side (in cell E13).
This is a standard form for expressing a constraint in a spreadsheet model. The spread-
sheet itself displays, but does not actually enforce, this constraint. The enforcement
task is left to the optimization software. Once the constraint is met, the corresponding
decisions are called feasible.

This is a good place to include a reminder about the software that accompanies
this book. The software contains important files and programs. In terms of files, the
book’s website1 contains all of the spreadsheets shown in the figures. Figures 1.1
and 1.2, for example, can be found in the file that contains the spreadsheets for
Chapter 1. Those files should be loaded, or else built from scratch, before continuing
with the text. As we proceed through the chapters, the reader is welcome to load each
file that appears in a figure, for hands-on examination.

1.3. A HIERARCHY FOR ANALYSIS

Before we proceed, some background on the development of models in organizations
may be useful. Think about the person who builds a model as an analyst, someone who
provides support to a decision maker or client. (In some cases, the analyst and the
client are the same.) The development, testing, and application of a model constitute
support for the decision maker—a service to the client. The application phase of this
process includes some standard stages of model use.

When a model is built as an aid to decision making, the first stage often involves
building a prototype, or a series of prototypes, leading to a model that the analyst and
the client accept as a usable decision-support tool. That model provides quantitative
analysis of a base-case scenario. In Example 1.1, suppose we set a tentative price of
$80. This price might be called a base case, in the sense that it represents a tentative
decision. As we have seen, this price leads to demand of 400 and profit contribution of
$16,000.

After establishing a base case, it is usually appropriate to investigate the answers
to a number of “what-if” questions. We ask, what if we change a numerical input or a
decision in the model—what impact would that change have? Suppose, for example,
that the marginal effect of price on demand (the slope of the demand curve) were –4
instead of –5. What difference would this make? Retracing our algebraic steps, or

1The URL for the book’s website is http://mba.tuck.dartmouth.edu/opt/
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revising the spreadsheet in Figure 1.1, we can determine that the profit contribution
would be $19,200.

Systematic investigations of this kind are called sensitivity analyses. They explore
how sensitive the results and conclusions are to changes in assumptions. Typically, we
start by varying one assumption at a time and tracing the impact. Then we might try
varying two or more assumptions, but such probing can quickly become difficult to
follow. Therefore, most sensitivity analyses are performed one assumption at a
time. Sometimes, it is useful to explore the what-if question in reverse. That is, we
might ask, for the result to attain a given outcome level, what would the numerical
input have to be? For example, starting with the base-case model, we might ask,
what price would generate a profit contribution of $17,000? We can answer this ques-
tion algebraically, by setting z ¼ 17,000 in Equation 1.3 and solving for x, or, with the
spreadsheet model, we can invoke Excel’s Goal Seek tool to discover that the price
would have to be about $86.

Sensitivity analyses are helpful in determining the robustness of the results and
any risks that might be present. They can also reveal how to achieve improvement
from better choices in decision making. However, locating improvements this way
is something of a trial-and-error process, and trial-and-error probing is inefficient.
Faster and more reliable ways of locating improvements are available. Moreover,
with trial-and-error approaches, we seldom know how far improvements can poten-
tially reach, so a best outcome could exist that we never detect.

From this perspective, optimization can be viewed as a sophisticated form of sen-
sitivity analysis that seeks the best values for the decisions and the best value for the
performance measure. Optimization takes us beyond mere improvement; we look for
the very best outcome in our model, the maximum possible benefit or the minimum
possible cost. If we have constraints in our model, then optimization also tells us
which of those conditions ultimately limit what we want to accomplish. Optimization
can also reveal what we might gain if we can find a way to overcome those constraints
and proceed beyond the limitations they impose.

1.4. OPTIMIZATION SOFTWARE

Optimization procedures find the best values of the decision variables in a given
model. In the case of Excel, the optimization software is known as Solver, which is
a standard tool available on the Data ribbon. (The generic term solver often refers
to optimization software, whether or not it is implemented in a spreadsheet.)
Optimization tools have been available on computers for several decades, prior to
the widespread use of electronic spreadsheets. Before spreadsheets became popular,
optimization was available as stand-alone software; it relied on an algebraic approach,
but it was often accessible only by technical experts. Decision makers and even their
analysts had to rely on those experts to build and solve optimization models.
Spreadsheets, if they were used at all, were limited to small examples. Now, however,
the spreadsheet allows decision makers to develop their own models, without having
to learn specialized software, and to find optimal solutions for those models using
Solver. Two trends account for the popularity of spreadsheet optimization. First,
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familiarity with spreadsheets has become almost ubiquitous, at least in the business
world. The spreadsheet has come to represent a common language for analysis.
Second, the software packages available for spreadsheet-based optimization now
include some of the most powerful tools available. The spreadsheet platform need
not be an impediment to solving practical optimization problems.

Spreadsheet-based optimization has several advantages. The spreadsheet allows
model inputs to be documented clearly and systematically. Moreover, if it is necessary
to convert raw data into other forms for the purposes of setting up a model, the required
calculations can be performed and documented conveniently in the same spreadsheet,
or at least on another sheet in the same workbook. This allows integration between
raw data and model data. Without this integration, errors or omissions are more
likely, and maintenance becomes more difficult. Another advantage is algorithmic
flexibility: The spreadsheet has the ability to call on several different optimization pro-
cedures, but the process of preparing the model is mostly the same no matter which
procedure is applied. Finally, spreadsheet models have a certain amount of intrinsic
credibility because spreadsheets are now so widely used for other purposes.
Although spreadsheets can contain errors (and often do), there is at least some comfort
in knowing that logic and discipline must be applied in the building of a spreadsheet.

Table 1.1 summarizes and compares the advantages of spreadsheet and algebraic
(3,4) software approaches to optimization problems. The main advantage of algebraic
approaches is the efficiency with which models can be specified. With spreadsheets,
the elements of a model are represented explicitly. Thus, if the model requires a thou-
sand variables, then the model builder must designate a thousand cells to hold their
respective values. Algebraic codes use a different method. If a model contains a thou-
sand variables, the code might refer to x(k), with a specification that k may take on
values from 1 to 1000, but x(k) need not be represented explicitly for each of the thou-
sand values.

A second advantage of algebraic approaches is the fact that they can sometimes
be tailored to a particular application. For example, the very large crew-scheduling
applications used by airlines exhibit a special structure. To exploit this structure in
the solution procedure, algebraic codes are sometimes enhanced with specialized sub-
routines that add solution efficiencies when solving a crew-scheduling problem.

A disadvantage of using spreadsheets is that they are not always transparent.
As noted earlier, the analyst has a lot of flexibility in the layout and organization
of a spreadsheet, but this flexibility, taken too far, may detract from effective
communication. In this book, we try to promote better communication by suggesting

Table 1.1. Advantages of Spreadsheet and Algebraic Solution Approaches

Spreadsheet approaches Algebraic approaches

Several algorithms available in one place Large problem sizes accommodated
Integration of raw data and model data Concise model specification
Flexibility in layout and design Standardized model description
Ease of communication with nonspecialists Enhancements possible for special cases
Intrinsic credibility
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standard forms for particular types of models. By using some standardization, we
make it easier to understand and debug someone else’s model. Algebraic codes
usually have very detailed specifications for model format, so once we’re familiar
with the specifications, we should be able to read and understand anyone else’s model.

In brief, commercially available algebraic solvers represent an alternative to
spreadsheet-based optimization. In this book, our focus on a spreadsheet approach
allows the novice to learn basic concepts of mathematical programming, practice
building optimization models, obtain solutions readily, and interpret and apply the
results of the analysis. All these skills can be developed in the accessible world of
spreadsheets. Moreover, these skills provide a solid foundation for using algebraic
solvers at some later date, when and if the situation demands it.

1.5. USING SOLVER

Purchasers of this book may download a powerful software package called Risk
Solver Platform (RSP) that was developed by the same team that created Excel’s
Solver and that accommodates all Excel Solver models. (Before continuing with
the text, the reader should install the software by following the guidelines and
instructions in Appendix 1.) RSP is an integrated software package that includes
more than just optimization capabilities, but this book focuses on optimization.
Hence, the installation instructions recommend setting this software to operate in
Premium Solver Platform mode, which exposes all of the optimization features, but
hides other features such as Monte Carlo simulation and decision trees. Once the
software is installed, a new Risk Solver Platform tab appears in Excel, with its own
ribbon of commands. Under Premium Solver Platform mode, a Premium Solver
Platform tab appears instead. In addition, the Add-Ins tab contains a Premium
Solver choice which displays a Solver Parameters dialog that closely resembles the
standard Excel Solver but uses the more powerful optimization capabilities of RSP.
For our purposes, these tabs contain the equivalent optimization capabilities, and
we may refer to either one.

In the remainder of this book, we assume the use of RSP, but we refer to it simply
as Solver. The book covers its four main optimization procedures:

† The nonlinear solver

† The linear solver

† The integer solver

† The evolutionary solver

As in all matters involving software, the user should be aware of the copyright
privileges and restrictions that apply to the use of RSP.

In order to illustrate the use of Solver, we return to Example 1.1. The optimization
problem is to find a price that maximizes quarterly profit contribution. An algebraic
statement of the problem is

Maximize z = (x − 40)y (objective)
subject to y + 5x = 800 (constraint)
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This form of the model corresponds to Figure 1.2, which contains two decision vari-
ables (x and y, or price and demand) and one constraint on the decision variables. The
spreadsheet model in Figure 1.2 is ready for optimization.

To start, we select the Risk Solver Platform tab and click on the Model icon
(on the left side of its ribbon). This step opens the task pane on the right-hand side
of the Excel window. The task pane contains four tabs: Model, Platform, Engine,
and Output. Initially, the Model tab displays a window listing several components
of the software, including Optimization. In Figure 1.3, we have expanded the
Optimization entry on the Model tab. As we specify the elements of our model,
they are recorded in the folder icons of this window. At the top of the model tab
five icons appear:

† Green “plus” sign, to Add model specifications

† Red “delete” sign, to Remove specifications

† Orange paired sheets with small blue arrows, to Refresh the display after
changes

† Green checked sheet, to Analyze the model

† Green triangle, to Solve the specified optimization problem.

To specify the model we first select the decision cells (C9:C10) and then on the drop-
down menu of the Add icon, select Add Variable. The range $C$9:$C$10 immedi-
ately appears in the Model window, in the folder for Normal Variables. (Another way

Figure 1.3. Model tab on the initial task pane.
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to accomplish this step without using the drop-down menu is to highlight the Normal
Variables folder icon and simply click the Add icon.)

Next, we select the objective cell (C16) and on the drop-down menu of the Add
icon, select Add Objective. The cell address $C$16 immediately appears in the Model
window, in the folder for Objective. By default, the specification assumes that the
objective is to maximize this value. (We can implement this step by highlighting
the Objective folder and simply clicking the Add icon.)

Next, we select the left-hand side of the constraint (C13) and on the drop-down
menu of the Add icon, select Add Constraint. (Alternatively, we can highlight the
Normal Constraints folder icon and click the Add icon.) The Add Constraint
window appears, with the cell address $C$13 in the Cell Reference box, as shown
in Figure 1.4. On the drop-down menu to its right, we select “ ¼ ” and enter E13 in
the Constraint box (or, with the cursor in the box, select cell E13).

When specifying constraints, one of our design guidelines for Solver models is
to reference a cell containing a formula in the Cell Reference box and to reference
a cell containing a number in the Constraint box. The use of cell references keeps
the key parameters visible on the spreadsheet, rather than in the less accessible win-
dows of Solver’s interface. The principle at work here is to communicate as much
as possible about the model using the spreadsheet itself. Ideally, another person
would not have to examine the task pane to understand the model. (Although
Solver permits us to enter numerical values directly into the Constraint box, this
form is less effective for communication and complicates sensitivity analysis. It
would be reasonable only in special cases where the model structure is obvious
from the spreadsheet and where we expect to perform no sensitivity analyses for the
corresponding parameter.)

Finally, we press OK and observe that the task pane displays the model’s speci-
fication, as shown in Figure 1.5. In summary, our model specification is the following:

Objective: C16 (maximize)

Variables: C9:C10

Constraint: C13 ¼ E13

This model is simple enough that we need not address the information on the
Platform tab. (However, it is generally a good idea to set the Nonsmooth Model

Figure 1.4. Add Constraint window.
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Transformation option to Never.) At the top of the Engine tab, we observe the default
selection of the Standard GRG Nonlinear Engine, which we refer to as the nonlinear
solver. (To ensure this selection, we uncheck the box for Automatically Select
Engine.) This solution algorithm is appropriate for our optimization problem, and
we do not need to address most of the other information on the tab. However, one
of the options is important.

Although we may guess that the optimal price is a positive quantity, the model as
specified permits the price decision to be negative. Such an outcome would not make
sense in this problem, so it may be a good idea to limit the model to nonnegative prices.
In fact, virtually all of the models in this book involve decision variables that make
practical sense only when they are nonnegative, so we will impose this restriction rou-
tinely. On the Engine tab of the task pane, we find the Assume Non-Negative option in
the General group and change it to True, using the drop-down menu on the right-hand
side, as shown in Figure 1.6.

Finally, we proceed to the Output tab (or return to the Model tab) and click the
Solve icon. Solver searches for the optimal price and ultimately places it in the
price cell. In this case, the optimal price is $100, and the corresponding quarterly
profit contribution is $18,000 as shown in Figure 1.7.

Figure 1.5. Model specification.
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Figure 1.6. Setting the Assume Non-Negative option.

Figure 1.7. Optimal solution for Example 1.1.
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Meanwhile, the Output tab’s window displays the solution log for the optimiz-
ation run. (The detail in this log is controlled by the Log Level option on the
Platform tab, but the default setting of Normal is usually adequate.) The most impor-
tant part of the log is the Solver Results message, which in this case states:

Solver found a solution. All
constraints and optimality conditions
are satisfied.

This optimality message, which is repeated at the very bottom of the task pane, tells us
that no problems arose during the optimization and Solver was able to find an optimal
solution. The profit-maximizing price is $100, yielding an optimal profit of $18,000.
No other price can achieve more than this level. Thus, if we are confident that the
demand curve continues to hold, the profit-maximizing decision would be to set
price at $100.

We have used Example 1.1 to introduce Solver and its interface. The task pane
contains many user-selected options that are not a concern in this problem. In later
chapters, we cover many of these settings and discuss when they become relevant.
We also discuss the variations that can occur in optimization runs. For example,
depending on the initial values of the decision variables, the nonlinear solver may gen-
erate the following result message in the solution log:

Solver has converged to the current
solution. All constraints are satisfied.

This convergence message indicates that Solver has not been able to confirm optim-
ality. Usually, this condition occurs because of numerical issues in the solution algor-
ithm, and the resolution is to rerun Solver from the point where convergence occurred.
Normally, one or two iterations are sufficient to produce the optimality message. We
discuss Solver’s result messages in more detail later.

With Solver, we can minimize an objective function instead of maximizing it.
We return to the specification in the window of the Model tab of the task pane and
double-click on the entry in the Objective folder. The Change Objective window
appears, as shown in Figure 1.8, and we can select the button for Min rather than
Max. (A third option allows us to specify a target value and find a set of variables

Figure 1.8. Selecting minimization of an objective.
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BOX 1.2 Excel Mini-Lesson: Using Range Names with Solver

Excel offers the opportunity to refer to a cell range using a custom name. The range name
can be entered in the Name Box (located just above the heading for column A) after select-
ing the desired range of cells. A one-cell range can be named in the same manner.

To illustrate the effect of using named ranges, suppose we return to the model of
Figure 1.2 and name the following cells:

Cells Name

C9:C10 Decisions

C13 Formula

E13 Constant

C16 Profit

Then the task pane window describes the model with range names instead of cell refer-
ences, as shown in Figure 1.9. When a new user examines the model, this form is likely
to be more meaningful than the use of literal cell references because the range names pro-
vide both description and documentation. Thus, range names are valuable for situations in
which communicating the model to other audiences is an important consideration. When
Solver is applied in an organizational setting, the use of range names is normally desirable.
In the remainder of this book, however, we will continue to rely on cell references because
they relate the information in the task pane directly to the contents of the spreadsheet
display.

Figure 1.9. Model specification with range names.
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that achieves the target value. This is not an optimization tool, and we will not pursue
this particular capability.)

When an optimization model contains several decision variables, we can enter
them one at a time, creating a list of Normal Variables in the task pane, each with
its own checked box. More conveniently, we can arrange the spreadsheet so that all
the variables appear in adjacent cells, as in Figure 1.2, and reference their cell range
with just one entry in the Normal Variables folder. Because most optimization prob-
lems have several decision variables, we save time by placing them in adjacent cells.
This layout also makes the information in the task pane easier to interpret when
someone else is trying to audit our work, or if we are reviewing it after not having
seen it for a long time. However, exceptions to this design guideline sometimes
occur. Certain applications lead us to use nonadjacent locations for convenience in
laying out the decision variable cells.

SUMMARY

Many types of applications invite the use of Excel’s Solver. In one sense, that is what this book is
about—the problem types that Solver can handle and the use of Solver to obtain solutions. Thus,
the book builds skill and confidence with spreadsheet applications because Solver is a spread-
sheet tool. Actually, as mentioned earlier, Solver is a collection of procedures. Therefore, this
book describes a variety of applications that can be addressed with spreadsheet capabilities.

In another sense, this book is about the problem types that Solver can handle, but the infor-
mation on how to run Solver is incidental. The transcendent theme is the building of optimization
models. If Solver wasn’t around to produce solutions, then some other software would perform
the computational task. The more basic skill is creating the model in the first place and recogniz-
ing its potential role in decision support.

Thus far, we have introduced six design guidelines for spreadsheet optimization models.

† Separate inputs from decisions and decisions from outputs.

† Create distinct modules for decision variables, objective function, and constraints.

† Display parameters explicitly on the spreadsheet, rather than in formulas.

† Enter parameters in the spreadsheet, rather than in the Add Constraints window.

† Place decision variables in adjacent cells.

† Highlight important cells, such as the decision variables and the objective.

Subsequent chapters introduce additional features of good spreadsheet design. This is not a
claim that each example spreadsheet is the only possible way of designing a model, or even
that it’s the best way. A model should be easy to recognize, debug, use routinely, and pass
on to others. A key feature of a good spreadsheet model is its ability to communicate clearly.

Chapters 2–5 deal with the linear solver, introducing many features of optimization analysis
in the process. Chapters 6 and 7 deal with models that can be solved with the integer solver, and
Chapter 8 deals with the nonlinear solver. The evolutionary solver, which is introduced
in Chapter 9, is not properly an optimization procedure in the same sense as the others, but it
applies in situations where the other solvers might fail. Each chapter is filled with illustrative
examples and followed by a set of practice exercises. If readers work through the examples
and the exercises they will develop a firm grasp on how to solve practical optimization problems
using spreadsheets.
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EXERCISES

1.1. Determining an Optimal Price A firm’s Marketing Department has estimated the
demand curve of a product as y ¼ 110027x, where y represents demand and x represents
the unit selling price (in dollars) for the relevant decision period. The unit cost is known to
be $24. What price maximizes net income from sales of the product?

1.2. Pricing in Two Markets Global Products, Inc. has been making an electronic appliance
for the domestic market. Demand for the appliance is price sensitive, and the demand curve
is known to follow the linear function D ¼ 400025P, where D represents annual demand
and P represents selling price in the home currency, which is the Frank (F). The cost of
manufacturing the appliance is 100F.

For the coming year, Global is planning to sell the same product in a foreign market,
where the currency is the Marc (M). From surveys, the demand curve in the foreign country
is estimated to follow a different linear function, D ¼ 200022P, where the price is
denominated in Marcs.

All production will be carried out at Global’s domestic plant, with the expectation that
the unit cost will remain unchanged. The exchange rate is 1.5 M/F, and Global plans to
offer an equivalent price in both markets.

(a) If Global were to operate exclusively in its domestic market, what would be its profit-
maximizing price and its annual profit?

(b) When Global sells in both markets at one equivalent price, what is its profit-
maximizing price and its annual profit?

1.3. Locating a Distribution Center Northeast Parts Supply is a wholesale distributor of
components for printers, fax machines, scanners, and related equipment. Northeast
stocks expensive spare parts, which dealers prefer not to hold, and offers same-day delivery
on any order. The firm now serves eight dealers in the New England area and wishes to
locate its distribution facility at a central point. In particular, its dealers have each been
assigned a location on an x–y grid, and Northeast would like to find the best location
for the distribution facility.

The eight dealers and their grid locations are shown in the following table:

Dealer 1 2 3 4 5 6 7 8

x-location 25 82 10 27 93 14 68 147
y-location 32 36 71 58 68 163 149 192

(a) Determine the location that minimizes the sum of the distances from the distribution
facility to the dealers.

(b) Determine the location that minimizes the maximum distance from the distribution
facility to any of the dealers.

1.4. Collecting Credit Card Debt A bank offers a credit card that can be used in various
locations. The bank’s analysts believe that the percentage P of accounts receivable col-
lected by t months after credit is issued increases at a decreasing rate. Historical data
suggest the following function:

P = 0.9[1 − exp(−0.6t)]
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The average credit issued in any one month is $125 million, and historical experience
suggests that for new credit issued in any month, collection efforts cost $1 million per
month.

(a) Determine the number of months that collection efforts should be continued if the
objective is to maximize the net collections (dollars collected minus collection
costs). Allow for fractional months.

(b) Under the optimal policy in (a), what percentage of accounts receivable should be
collected?

1.5. Allocating Plant Output A firm owns five manufacturing plants that are responsible for
the quarterly production of an industrial solvent. The production process exhibits diseco-
nomies of scale. At plant p, the cost of making x thousand pounds of the solvent is approxi-
mated by the quadratic function f (x) ¼ (1/cp)x2. The parameters cp are plant dependent,
as shown in the table.

p 1 2 3 4 5

cp 3 6 4 8 5

The quarterly volume requirement is 50,000 pounds.
How should production be allocated among the five plants in order to minimize the

total cost of meeting the volume requirement?

1.6. Determining Production Lot Sizes Four products are routed through a machining
center that is notorious for its delays. Each product has had stable demand for some
time, so that average weekly demand is predictable over a 3–6 month time frame.
However, in the short run, demand fluctuates a great deal, and the load at the machining
center varies considerably. The production control system dictates the lot size for each
of the products. These quantities are shown, along with other relevant information, in
the following table.

Product Demand Setup Run time Lot
no. (weekly) (hours) (hours/1000) size

1 100 3 30 100
2 500 15 45 500
3 50 6 75 100
4 250 24 150 1500

With the current lot sizes, the machining center is running at a utilization of about
76%, but long lead times, sometimes over 2 weeks, have discouraged production planners
from increasing its load. (A week contains 120 productive hours.) In the past, lead times
spiraled out of control when utilization grew to around 80%.

A lead time model for this problem has been constructed on a spreadsheet.2 The
model permits the user to select lot sizes and thereby influence the average lead time
through the bottleneck work center. The lead time prediction is based on advanced model-
ing techniques, but the details of the model are not of primary importance.

What is the shortest possible lead time, and what lot sizes achieve this value?

2The lead time model is available in the DataSets workbook, at the book’s website (http://mba.tuck.
dartmouth.edu/opt/).

Exercises 19



1.7. Resolving a Construction Dilemma A library building is about to undergo some reno-
vations that will improve its structural integrity. As part of the process, a number of steel
beams will be carried through the existing bookcases from a broad, open area around
the entry point. The central aisle between the bookcases is 10 feet wide, while the side
aisles (which run perpendicular to the central aisle) are 6 feet wide. The renovation will
require that steel beams be carried through the stacks, down the main aisle and turning
into the smaller aisles.

What is the longest steel beam that can be carried horizontally through this space to a
construction point along the outer walls?

1.8. Selecting the Number of Warehouses The customers of a particular company are
located throughout an area comprised of S square miles, and they are serviced from k
warehouses. On average, the distance in miles between a warehouse and a customer
is given by the formula (S/k)0.5. The annual capital cost of building a warehouse is
$40,000 and the annual operating cost of running a warehouse is $60,000. Annual shipping
costs average $1 per mile per customer.

Suppose that the current market size is 250,000 customers, spread out over an area of
500 square miles. What is the optimal number of warehouses for the firm to operate?
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Chapter 2

Linear Programming:
Allocation, Covering, and
Blending Models

The linear programming model is a very rich context for examining business
decisions. A large variety of applications has been reported in the 50 years or so
that computers have been available for this type of decision support. Our first task
in this chapter is to describe the features of linearity in optimization models. We
then begin our survey of linear programming models. Appendix 2 provides a graphical
perspective on linear programming. This material may help with an understanding of
the linear programming model, but it is not essential for proceeding with spreadsheet-
based approaches.

The term linear refers to properties of the objective function and the constraints. A
linear function exhibits proportionality, additivity, and divisibility. Proportionality
means that the contribution from any given decision variable to the objective grows
in proportion to its value. When a decision variable doubles, then its contribution to
the objective also doubles. Additivity means that the contribution from one decision
is added to (or sometimes subtracted from) the contributions of other decisions. In
an additive function, we can separate the contributions that come from each decision
variable. Divisibility means that a fractional decision variable is meaningful. When a
decision variable involves a fraction, we can still interpret its significance for manage-
rial purposes.

The algebra of model building leads us to models that are either linear or non-
linear. Problems in linear programming are built from linear relationships, whereas
nonlinear programming includes other mathematical relationships. Together, these
two categories comprise mathematical programming problems. Linear methods
tend to be more efficient than nonlinear methods, and linear models allow for
deeper interpretations. Moreover, it is often a reasonable first step, in many appli-
cations, to assume that a linear relationship holds. For those reasons, we devote special
attention to the case of linear programming.

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
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In the course of this chapter, we begin to see how different situations lend them-
selves to basic linear programming representation. Although it might be an over-
simplification to say that only a few linear programming model “types” exist, it is
still helpful to think in terms of a small number of basic structures when learning
how to build linear programming models. This chapter presents three different
types, classified as allocation, covering, and blending models. The next chapter
covers another very important type, the network model. Most linear programming
applications are actually combinations of these four types, but seeing the building
blocks separately helps to clarify the key modeling concepts. Chapter 5 is devoted
to linear programming models for data envelopment analysis (DEA), where the
model is essentially an allocation problem, but the significance and application setting
is specialized. Before embarking on a tour of model types, however, we start with
some preliminary concepts regarding all models we will encounter in the linear
programming chapters.

2.1. LINEAR MODELS

Linearity is an important technical consideration in building models for Solver. When
working with a linear model, we can call on the linear solver to find optimal solutions.
Although Solver contains other procedures, as we mentioned in the previous chapter,
the linear solver is the most reliable. As we will see later, it also offers us the deepest
technical insights into sensitivity analysis. However, to harness the linear solver, our
model must adhere to the requirements of proportionality, additivity, and divisibility.

Linearity is also an important practical consideration in building models. Many
modeling applications involve linear relationships. Ultimately, however, linearity is
a feature of the model, not necessarily an intrinsic feature of the motivating problem.
Therefore, if we use a linear model, it should provide an adequate representation of the
problem at hand. In any particular application, the users of a linear model must be
satisfied that proportionality, additivity, and divisibility are reasonable assumptions.
Even when practical situations involve nonlinear relationships, they may be approxi-
mately linear in the region where realistic decisions are likely to lie.

Algebraically, a linear function is easy to recognize. Variables in a linear function
have an exponent of 1 and are never multiplied or divided by each other. Recall the
demand curve and the profit contribution from Example 1.1:

y = 800 − 5x (2.1)

z = (x − 40)y (2.2)

Equation 2.1 is a linear function of x, but Equation 2.2 is nonlinear because it contains
the product of x and y. We could of course substitute for y and rewrite the profit func-
tion, leading to the following equation:

z = 1000x − 5x2 − 32,000 (2.3)

In Equation 2.3, there is no product of variables in the profit contribution, but the func-
tion contains the variable x with an exponent of 2, another indication of nonlinearity.
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Thus, our pricing model is nonlinear. Special functions, such as log(x), abs(x), and
exp(x) are also nonlinear.

Managerially, we can recognize linear behavior by asking questions about pro-
portionality, additivity, and divisibility. For example, suppose we write the total
cost of transporting quantities of wheat (w) and corn (c) as z ¼ 3w + 2c. To test
whether this function is a good representation, we might ask the following questions.

† When we transport an additional unit of wheat, does the total cost rise by same
amount, no matter what the level of wheat? (Proportionality)

† When we transport an additional unit of corn, is the increase in total cost
affected by the level of wheat? (Additivity)

† Are we permitted to transport a fractional quantity of wheat or corn?
(Divisibility)

If the answers are affirmative, we have some evidence that the transportation cost can
be represented as a linear function.

When an algebraic model contains several decision variables, we may give them
letter names, such as x, y, and z, as in our pricing example. Alternatively, we may
number the variables and refer to them as x1, x2, x3, etc. When there are n decision
variables, we can write a linear objective function as follows:

z = c1x1 + c2x2 + · · · + cnxn

where z represents the value of the objective function and the cs are a set of given
parameters called objective function coefficients. In this expression, the xs appear with
exponents of 1 (so that the objective function exhibits proportionality), appear in

BOX 2.1 Excel Mini-lesson: The SUMPRODUCT Function

The SUMPRODUCT function computes a quantity sometimes called an inner product or a
scalar product. First, we pair elements from two arrays; then we sum their pairwise pro-
ducts. (The function can be applied to more than two arrays in Excel, but our primary con-
cern in optimization models is the case of two arrays.) The basic form of the function is the
following:

SUMPRODUCT(Array1, Array2)

† Array1 references a rectangular array; in this instance, normally a row.

† Array2 references a rectangular array with the same dimensions as Array1.

For example, if the two arrays contain {1, 3, 5} and {2, 4, 6}, then the
SUMPRODUCT function returns the value (2 × 1) + (4 × 3) + (6 × 5) ¼ 44. The
arrays must have the same dimensions—that is, one array must have the same number
of rows and columns as the other. If the number of cells in each array is the same but
the dimensions differ, then the SUMPRODUCT function displays #VALUE! to indicate
an error.
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separate terms (so that the objective function exhibits additivity), and are not restricted
to integers (so that the objective function exhibits divisibility). In a spreadsheet, we
could calculate z with the SUMPRODUCT function, which adds the pairwise products
of corresponding numbers in two lists of the same length. Thus, in a spreadsheet, we
can recognize a linear function if it consists of a sum of pairwise products, where one
element of each product is a parameter and the other is a decision variable.

2.1.1. Linear Constraints

Constraints appear in three varieties in optimization models: less-than (LT) con-
straints, greater-than (GT) constraints, and equal-to (EQ) constraints. Each constraint
involves a relationship between a left-hand side (LHS) and a right-hand side (RHS).
By convention, the RHS is a number (usually, a parameter), and the LHS is a function
of the decision variables. The forms of the three varieties are:

LHS ≤ RHS (LT constraint)

LHS ≥ RHS (GT constraint)

LHS ¼ RHS (EQ constraint)

We use LT constraints to represent capacities or ceilings, GT constraints to
represent commitments or thresholds, and EQ constraints to represent material balance
or consistency among related variables. Box 2.2 lists some common examples of these
kinds of constraints. For an example of consistency in an EQ constraint, think about
a cash-planning application involving a requirement that end-of-month cash (E)
must equal start-of-month cash (S ) plus collections (C ) minus disbursements (D).

BOX 2.2 Examples of Constraints

Less-than Constraints
Number of pounds of steel consumed ≤ number of pounds available
Number of customers serviced ≤ service capacity
Thousands of televisions sold ≤ market demand (in thousands)

Greater-than Constraints
Number of cartons delivered ≥ number of cartons ordered
Number of nurses scheduled ≥ number of nurses required on duty
Weighted sum of returns ≥ return threshold

Equal-to Constraints
Total circuit boards purchased from all vendors ¼ circuit boards available
Cables fabricated + cables purchased ¼ cables in stock
Initial inventory + production – final inventory ¼ shipments
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In symbols, this relationship translates into the following algebraic expression:

E = S + C − D

In a typical application, disbursement levels play the role of given parameters and the
other quantities are variables. For that reason, start-of-month cash plus collections
minus end-of-month cash would become the LHS of an EQ constraint, and disburse-
ments would become the RHS. Algebraically, we could simply rewrite the above
expression as follows:

S + C − E = D

In linear programs, the LHS of each constraint must be a linear function. In other
words, the LHS can be represented by a SUMPRODUCT function. In most cases,
we actually use the SUMPRODUCT formula in the spreadsheet model. In special
cases where the parameters in the formula are all 1s, we may substitute the SUM for-
mula for greater transparency.

2.1.2. Formulation

Every linear programming model contains decision variables, an objective function,
and a set of constraints. Before setting up a spreadsheet for optimization, a first step
in building the model is to identify these elements, at least in words if not in symbols.
Box 2.3 summarizes the questions we should ask ourselves in order to structure
the model.

To guide us toward decision variables, we ask ourselves, “What must be
decided?” The answer to that question should direct us to a choice of decision vari-
ables, and we should be especially precise about the units we are working in.
Common examples of decision variables include quantities to buy, quantities to

BOX 2.3
Questions that Help Translate a Problem into an
Optimization Model

Decision variables

Ask, What must be decided?

Objective function
Ask, What measure will we use to compare sets of decision variables?

Constraints
Ask, What restrictions limit our choice of decision variables?
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deploy, quantities to produce, or quantities to deliver. Whatever the decision variables
are, once we know their numerical values, we should have a resolution to the problem,
though not necessarily the best resolution.

To guide us toward an objective function, we ask ourselves, “What measure will
we use to compare sets of decision variables?” It is as if two consultants have come to
us with their recommendations on what action to take (what levels of the decision vari-
ables to use), and we must choose which action we prefer. For this purpose, we need a
yardstick—some measuring function that tells us which action is better. That function
will be a mathematical expression involving the decision variables, and it will nor-
mally be obvious whether we wish to maximize or minimize it. Maximization criteria
usually focus on such measures as profit, revenue, return, or efficiency. Minimization
criteria usually focus on cost, time, distance, capacity, or investment. In the model,
only one measure can play the role of the objective function.

To guide us toward constraints, we ask ourselves, “What restrictions limit our
choice of decision variables?” We are typically not free to choose any set of decisions
we like; intrinsic limitations in the problem have to be respected. For example, we
might look for capacities that provide upper limits on certain activities and give rise
to LT constraints. Alternatively, there may be commitments that place thresholds on
other activities, in the form of GT constraints. Sometimes, we wish to specify
equations, or EQ constraints, that ensure consistency among a set of variables.
Once we have identified the constraints in a problem, we say that any set of decision
variables consistent with all the constraints is a feasible solution. That is, a feasible
solution represents a course of action that does not violate any of the constraints.
Among feasible solutions, we want to find the best one.

It is usually a good idea to identify decision variables, objective function, and
constraints in words first, and then translate them into algebraic symbols. The alge-
braic step is useful when we practice the formulation of optimization models
because it helps us to be precise at an early modeling stage. In addition, an algebraic
formulation can usually be translated into a spreadsheet model directly, although we
may wish to make adjustments for the spreadsheet environment. As indicated in
Chapter 1, it is desirable to create as much transparency as possible in the spreadsheet
version of a model, therefore, our approach will be to construct an algebraic formula-
tion as a prelude to creating the spreadsheet model.

2.1.3. Layout

We follow a disciplined approach to building linear programming models on a spread-
sheet by imposing some standardization on spreadsheet layout. The developers
of Solver provided model builders with considerable flexibility in designing a spread-
sheet for optimization. However, even those developers recognized the virtues of some
standardization, and their user’s manual conveys a sense that taking full advantage
of the software’s flexibility is not always consistent with best practice. We adopt
many of their suggestions about spreadsheet design.
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The first element of our structure is modularity. We should try to reserve separate
portions of the worksheet for decision variables, objective function, and constraints.
We may also want to devote an additional module to raw data, especially in large pro-
blems. In our basic models, we should try to place all decision variables in adjacent
cells of the spreadsheet (with color or border highlighting). Most often, we can display
the variables in a single row, although in some cases the use of a rectangular array is
more convenient. The objective function should be a single cell (also highlighted),
containing a SUMPRODUCT formula, although in some cases an alternative may
be preferable. Finally, we should arrange our constraints so that we can visually com-
pare the LHS’s and RHS’s of each constraint, relying on a SUMPRODUCT formula
to express the LHS, or in some cases, a SUM formula. For the most part, our models
can literally reflect left and right in the layout, although sometimes other forms also
make sense.

The reliance on the SUMPRODUCT function is a conscious design strategy. As
mentioned earlier, the SUMPRODUCT function is intimately related to linearity. By
using this function, we can see structural similarities in many apparently different
linear programs, and the recognition of this similarity is key to our understanding.
Moreover, by taking this approach, we can build recognizable models in a standard
format for virtually any linear programming problem (although other approaches
may be better for certain circumstances). In addition, the SUMPRODUCT function
has technical significance. Solver is designed to exploit the use of this function,
mainly in setting up the problem quickly for internal calculations. This becomes an
advantage in large models, so it makes sense to learn the habit while practicing on
smaller models.

With the partial standardization implied by these “best practice” guidelines, we
may be restricting the creative instinct somewhat, but we gain in several important
respects.

† We enhance our ability to communicate with others. A standardized structure
provides a common language for describing linear programs and reinforces
our understanding about how such models are shaped. This is especially true
when spreadsheet models are being shown to technical experts.

† We improve our ability to diagnose errors while building the model. A standar-
dized structure has certain recognizable features that help us detect modeling
errors or simple typos. In a spreadsheet context, we often exploit the ability
to copy a small number of cell formulas to several other locations, so we can
avoid some common errors by entering part of the standard structure carefully
and then copying it appropriately.

† We make it relatively easy to “scale up” the model. That is, we may want to
expand a model by adding variables or constraints, allowing us to move
from a prototype to a practical scale or from a “toy” problem to an “industrial
strength” version. The standard structure adapts readily when we wish to
expand a model this way.
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† We avoid some interpretation problems when we perform sensitivity analysis.
A standardized structure ensures that Solver will treat the spreadsheet infor-
mation in a dependable fashion. Otherwise, sensitivity analyses may become
ambiguous or confusing.

2.1.4. Results

Just as there are three important modules in our spreadsheet (decision variables, objec-
tive function, and constraints), there are three kinds of information to examine in the
optimization results.

† The optimal values of the decision variables indicate the best course of action
for the model.

† The optimal value of the objective function specifies the best level of perform-
ance in the model.

† The status of the constraints reveals which factors in the model truly prevent the
achievement of even better levels of performance.

In particular, a LT or GT constraint in which the LHS equals the RHS is called
a tight or a binding constraint. Prior to solving the model, each constraint is a potential
limitation on the set of decisions, but the optimization of the model identifies which
constraints are actual limitations. These are the physical, economic, or administrative
conditions in the problem that actively restrict the ultimate performance level.

We can think of the solution to a linear program as providing what we might call
both tactical and strategic information. Tactical information means that the optimal
solution prescribes the best possible set of decisions under the given conditions.
Thus, if the model represents an actual situation, its optimal decisions represent a
plan to implement. Strategic information means that the optimal solution identifies
which conditions prevent the achievement of better levels of performance. In particu-
lar, the model’s binding constraints indicate the factors that restrict the objective func-
tion. If we don’t have to implement a course of action immediately, we can explore the
possibility of altering one or more of those constraints in a way that improves the
objective. Thus, if the model represents a situation with given parametric conditions,
and we want to improve the level of performance, we can examine the possibility of
changing the “givens.”

Whether we have tactical information or strategic information in mind, we must
still recognize that the optimization process finds a solution to the model, not necess-
arily to the actual problem. The distinction between model and problem derives
from the fact that the model is, by its very nature, a simplification. Any features of
the problem that were assumed away or ignored must be addressed once we have a
solution to the model. For example, a major assumption in linear programs is that
all of the model’s parameters are known with certainty. Frequently, however, we
find that we have to work with uncertain estimates of model parameters. In that situ-
ation, it is important to examine the sensitivity of the model’s results to alternative
assumptions about the values of the parameters.
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2.2. ALLOCATION MODELS

We now proceed with our tour of the basic linear programming types. The allocation
problem calls for maximizing an objective (usually profit-related) subject to LT con-
straints on capacity. In the traditional economic paradigm, several activities compete
for limited resources, and we seek the best allocation of resources among the compet-
ing activities. Consider the example of Brown Furniture Company.

EXAMPLE 2.1 Brown Furniture Company

Brown Furniture Company makes three kinds of office furniture: chairs, desks, and tables. Each
product requires skilled labor in the parts fabrication department, unskilled labor in the assembly
department, machining on some key pieces of equipment, and some wood as raw material. At
current prices, the unit profit contribution for each product is known, and the company can sell
everything that it manufactures. The size of the workforce has been established, so the number
of skilled and unskilled labor hours are known. The time available on the relevant equipment
has also been determined, and a known quantity of wood can be obtained each month under
a contract with a wood supplier. Managers at Brown Furniture would like to maximize their
profit contribution for the month by choosing production quantities for the chairs, desks, and
tables. The data shown below summarize the parameters of the problem.

Requirements per unit

Chairs Desks Tables Resources available

Fabrication (hr) 4 6 2 2000 hr
Assembly (hr) 3 8 6 2000 hr
Machining (hr) 9 6 4 1440 hr
Wood (sq. ft) 30 40 25 9600 sq. ft

Profit per unit $16 $20 $14

B

The data in Example 2.1 would likely come from several sources. The number of
labor hours available might be a parameter supplied by the Human Resources
Department. The labor required for each product more likely comes from the
Production Department, and the contract quantity for wood might come from
Procurement. Unit profit contributions can be calculated from information on selling
prices and unit costs, which could come from the Marketing and Accounting
Departments. In short, the kind of data needed for optimization analysis can often
be found in various parts of an organization, and the process of data gathering requires
communication with several functions of the firm. Although we won’t discuss the
details of data sources for most of the other examples in this book, the point is a general
one. Data needed for optimization are seldom found in just one place. More typically,
we have to pursue an interfunctional network of contacts to obtain the data we need for
modeling.
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To build a model for this problem, we follow the outline of Box 2.3. To determine
decision variables, we ask, “What must be decided?” The answer is the product mix, so
we define decision variables as the numbers of chairs, desks, and tables. For the pur-
poses of notation, we can use C, D, and T to represent the number of chairs, the number
of desks and the number of tables, respectively.

Next, we ask, “What measure will we use to compare sets of decision variables?”
If two people in the organization were to advocate two different production plans, we
would respond by calculating the total profit contribution for each one and choosing
the larger value. To calculate profit contribution, we add the profit from chairs, the
profit from desks, and the profit from tables. Thus, an algebraic expression for total
profit becomes:

Profit = 16C + 20D + 14T

To identify the model’s constraints, we ask, “What restrictions limit our choice of
decision variables?” This scenario describes four resource capacities. In words, a pro-
duction capacity constraint might state that the resources consumed in a production
plan must be less than or equal to the resources available. Laying out those words
in the form of an inequality, we can write:

Fabrication hours consumed ≤ Fabrication hours available

where we chose to place “hours available” on the RHS because it is represented by
a parameter of the model (2000 hours, in this case). Converting the inequality to
symbols, we can then write:

Fabrication hours consumed = 4C + 6D + 2T

≤ 2000 (Fabrication hours available)

Similar constraints must hold for the assembly hours, machining time, and wood
supply:

Assembly hours consumed = 3C + 8D + 6T ≤ 2000 (Assembly hours available)

Machining time consumed = 9C + 6D + 4T ≤ 1440 (Machining time available)

Wood consumed = 30C + 40D + 25T ≤ 9600 (Wood available)

We now have four constraints that describe the restrictions limiting our choice of
decision variables C, D, and T. The entire model, stated in algebraic terms, reads as
follows:

Maximize z = 16C + 20D + 14T

subject to

4C + 6D + 2T ≤ 2000

3C + 8D + 6T ≤ 2000

9C + 6D + 4T ≤ 1440

30C + 40D + 25T ≤ 9600
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This algebraic statement reflects a standard format for linear programs. Each variable
corresponds to a column and each constraint corresponds to a row, with the objective
function appearing as a special row at the top of the model. This layout is suitable for
spreadsheet display as well.

A spreadsheet model for the allocation problem appears in Figure 2.1. Three
modules appear in the spreadsheet, including a highlighted row for the decision vari-
ables, a highlighted single cell for the objective function value, and a set of constraint
relationships in which the RHS values are highlighted. The cells containing the
symbol ,¼ have no function in the operation of the spreadsheet; they are intended
as a visual aid to the user, helping to convey the information in the constraints. We
place them between the LHS value of the constraint (a formula) and the RHS value
(a parameter).

Figure 2.2 shows the formulas in this model. Aside from labels, the model con-
sists of only two kinds of cells: those containing numbers and those containing a
SUMPRODUCT formula. This is our standard form for a linear program in a
spreadsheet.

Figure 2.1 contains an arbitrary set of values for the decision variables (50 chairs,
75 desks, and 100 tables). We could try different sets of three values in order to see
whether we could come up with a good allocation by trial and error. Such an attempt
might also be a useful debugging step, to reassure ourselves that the model is
complete. For example, suppose we start by fixing the number of desks and tables
at zero and varying the number of chairs. For Fabrication capacity, chairs consume
4 hours each and 2000 hours are available; so we could put 2000/4 ¼ 500 chairs
into the plan (i.e., into cell B5), and the result would be feasible for the first constraint.
However, we can see immediately—by comparing the LHS and RHS values—that
this number requires more machining time than we have available. Therefore, we

Figure 2.1. Model for the Brown Furniture example.
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can reduce the number of chairs to 160 ( just enough to consume all of the machining
hours) and verify that sufficient quantities of the other resources are available to sup-
port this volume. Thus, we obtain a feasible plan and a profit contribution of $2560. If
we rely on desks alone, instead of tables, we run into limits imposed by both machin-
ing capacity and wood supply, resulting in profits of $4800. If we rely solely on tables,
we run into limits imposed by assembly capacity, leading to profits of $4666. Next, we
might try some plans containing two of the three products, or perhaps all three. Such
experiments help us to confirm that the model is working properly and give us a feel
for the profit figures that might be achievable.

After verifying the model in this fashion, we proceed to the optimization pro-
cedure on the Risk Solver Platform tab, clicking the Model icon on the ribbon to
make the task pane visible. We then take the following steps.

† Select cells B5:D5, then choose Add Variables from the drop-down menu on
the Add icon.

† Select cell E8, then choose Add Objective from the drop-down menu on the
Add icon.

† Select cells E11:E14, then choose Add Constraint from the drop-down menu
on the Add icon.

† Fill in the Add Constraint window requiring that the range E11:E14 must be
less than or equal to G11:G14 (see Figure 2.3). Then press OK.

At this stage the window on the Model tab displays the full specification, as shown in
Figure 2.4.

Next, we go to the Engine tab (see Figure 2.5) and take two steps.

† Select the Standard LP/Quadratic Engine from the drop-down menu. This step
specifies the use of the linear solver.

† In the main window, set the option for Assume Non-Negative to True.

Figure 2.2. Formulas in the Brown Furniture model.
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The first of these steps specifies the use of the linear solver. The second makes it
unnecessary to add explicit constraints forcing the variables to be greater than or
equal to zero.

We are now ready for the optimization run, which we can invoke by clicking on
the green triangle icon on either the Model tab or the Output tab. First, however, we
might want to think about some hypotheses. For example, do we expect that the opti-
mal solution will call for all three products? Will it consume all of the available hours?
What order of magnitude should we expect for the optimal profit? This step helps us
build a better intuition for the problem or perhaps discover an error.

Figure 2.4. Specification for the Brown Furniture model.

Figure 2.3. Specifying the constraints.
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If no technical problems occur after we initiate the optimization run, Solver
produces the following result message in the solution log on the Output tab:

Solver found a solution. All
constraints and optimality conditions
are satisfied.

We recognize this as the optimality message, which we encountered in Chapter 1. At
this point the optimal solution is displayed on the spreadsheet.

The linear solver implements a version of the algorithm known as the simplex
method. Although it is not necessary to be acquainted with the simplex method in
order to apply linear programming or to appreciate its significance, some exposure
to the algorithm may be useful. Appendix 3 provides an algebraic description of the
simplex method.

Figure 2.6 displays the optimal solution to our model for the example.

† The optimal plan contains no chairs, 160 desks, and 120 tables.

† The maximum profit contribution is $4880.

† The binding constraints are assembly capacity and machining capacity.

These are the three key pieces of information provided in the solution. Evidently,
the profit margin on chairs is not sufficiently attractive for us to devote scarce resources
to their production. But even by relying on desks and tables, Brown Furniture can
maximize its profit contribution for the month. (We examine the solution in more
detail later on.)

Recall the distinction made earlier between tactical and strategic information in
the linear program’s solution. Faced with implementing a production plan for next
month at Brown Furniture, we could pursue the tactical solution, producing no
chairs, 160 desks, and 120 tables. However, the tactical solution is the optimal solution

Figure 2.5. Specifications on the Engine tab.
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for the model. Perhaps it is not the optimal solution for the actual problem facing
Brown Furniture. For example, a relevant marketing consideration might have been
omitted from the model. Perhaps our marketing department is reluctant to bring a lim-
ited product line to the marketplace—that is, by producing no chairs at all. Even if the
optimization of a short-term objective calls for a limited product line, long-term risks
may arise if some customers conclude that Brown Furniture cannot make chairs. Thus,
the optimal solution of the model may turn out to be only the first step in a discussion
of how to reflect long-term marketing needs in short-term planning processes.
Possibly, this discussion will lead to revisions in the model, and the optimal solution
will be revisited.

On the other hand, if there were time to adjust the resources available at Brown
Furniture and we were interested in the strategic implications of the solution, we
would want to explore the possibility of acquiring more assembly capacity or machin-
ing capacity because those are the binding constraints. We know that additional fab-
rication capacity or wood supply would not provide any benefit, given current
conditions, because we can achieve optimal profits without fully consuming either
of those resources. Overcoming the limited supply of assembly capacity and machin-
ing capacity is the key to achieving higher profits.

2.2.1. The Product Mix Problem

The product mix problem is a variation of the basic allocation model. It follows the
structure of the allocation model by prescribing the maximization of profit contri-
bution subject to LT constraints. Typically, the decision variables correspond to quan-
tities of various products to include in a company’s product mix. The constraints are

Figure 2.6. Optimal solution to the Brown Furniture model.
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usually of two types: capacity constraints on production resources and demand con-
straints on potential sales. In Example 2.1, suppose that the company markets its
chairs, tables, and desks through a distributor who also provides monthly forecasts
of demands. Next month’s forecasts are:

Chairs Desks Tables

Demand 300 120 144

With this information, we can extend the basic allocation model to include three
demand constraints as well. The full model takes the following algebraic form.

Maximize z = 16C + 20D + 14T

subject to

4C + 6D + 2T ≤ 2000

3C + 8D + 6T ≤ 2000

9C + 6D + 4T ≤ 1440

30C + 40D + 25T ≤ 9600

C ≤ 300

D ≤ 120

T ≤ 144

The spreadsheet version of this model simply adds three rows to the model in
Figure 2.6. Most easily, the LHS formula can be copied from the wood supply con-
straint (cell E14) into cells E15:E17 after the new coefficients have been added, as
shown in Figure 2.7.

We must then update the model specification so that all seven constraints are
included. To make this adjustment most simply, we can select the range E15:E17
and add the corresponding constraints via the Add Constraint window. The updated
representation in the window of the Model tab lists two sets of constraints, as
shown in Figure 2.8. Although it may not be necessary in every case, it is a good
habit to click the Refresh icon after adding or deleting variables or constraints, so
we do that here.

Alternatively, to update the allocation model, we can double-click on the icon for
the existing Normal constraints, which opens the Change Constraint window. This
time, we can edit the Cell Reference box and the Constraint box so that the ranges
include all seven of the constraints. Then, the window on the Model tab displays
only one set of constraints. Again, it is a good habit to click Refresh.

A new optimization run then reveals that the optimal product mix becomes 16
chairs, 120 desks, and 144 tables, as shown in Figure 2.9. The optimal profit contri-
bution in the product mix model is $4672. This amount is less than the optimal
profit in the original allocation model. Not surprisingly, the imposition of demand ceil-
ings leads to a reduction in the optimal profit. In fact, looking back at Figure 2.7, we
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Figure 2.8. Specifying additional constraints.

Figure 2.7. Product mix model.
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can see immediately that the product mix of 160 desks and 120 tables does not meet all
of the demand ceiling constraints. This outcome illustrates the intuitive principle that
the addition of constraints to a model cannot improve the optimal objective function—
it will be the same or worse when constraints are added.

Three binding constraints occur in the product mix model: the demand ceiling
for desks, the demand ceiling for tables, and machining capacity. None of the other
constraints is binding.

In general, the product mix model involves different types of capacity and perhaps
different types of demand. For example, in our scenario, the different types of capacity
are labor, equipment, and material inputs for production. Alternatively, the labor might
be broken down into regular-time and overtime hours, or the material could come from
“make” versus “buy” sources (i.e., from in-house fabrication and assembly or from an
outside subcontractor). Similarly, demand could be specified by geographical region
or by time period, the latter for a multiperiod formulation. In the multiperiod case, it is
usually helpful to keep track of inventory levels, partly because inventories affect costs
but also because inventory can be considered yet another source of product, just like
regular-time capacity or subcontracted production. One common variation of the basic
product mix model is to include GT constraints on potential sales of certain products.
A minimum demand quantity might reflect a contractual commitment or represent a
sales level that management wishes to meet under any circumstances. Such demand
thresholds may or may not be part of the model; the distinctive features of the product

Figure 2.9. Optimal Solution to the product mix model.
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mix model are capacity constraints on productive resources and demand constraints on
market requirements.

2.3. COVERING MODELS

The covering problem calls for minimizing an objective (usually cost related) subject
to GT constraints on required coverage. Whereas the allocation model divides
resources and assigns them to competing activities, the covering model combines
resources and coordinates activities. Consider the example of Herrick Foods
Company.

EXAMPLE 2.2 Herrick Foods Company

Herrick Foods Company wishes to introduce packaged trail mix as a new product. The ingredi-
ents for the trail mix are seeds, raisins, flakes, and two kinds of nuts. Each ingredient contains a
certain amount of vitamins, minerals, protein, and calories; and the Marketing Department has
specified the product be designed so that a certain minimum nutritional profile is met. The
decision problem is to minimize the product cost and determine the product composition—
that is, by choosing the amount of each ingredient in the mix. The data shown below summarize
the parameters of the problem.

Grams per pound
Nutritional

Seeds Raisins Flakes Pecans Walnuts requirement

Vitamins 10 20 10 30 20 16
Minerals 5 7 4 9 2 10
Protein 1 4 10 2 1 15
Calories 500 450 160 300 500 600

Cost/pound $4 $5 $3 $7 $6

B

To determine the decision variables, we again ask, “What must be decided?” The
answer is we need to determine the amount of each ingredient to put in a package of
trail mix. For the purposes of notation, we can use S, R, F, P, and W to represent the
number of pounds of each ingredient in a package.

Next, we ask, “What measure will we use to compare sets of decision variables?”
This should be the total cost of a package, and our interest lies in the lowest possible
total cost. To calculate the total cost of a particular composition, we sum the costs of
each ingredient in the package

Cost = 4S + 5R + 3F + 7P + 6W

To identify the model’s constraints, we ask, “What restrictions limit our choice of
decision variables?” In this scenario, the main limitation is the requirement to meet the
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specified nutritional profile. Each dimension of this profile gives rise to a separate con-
straint. An example of such a constraint states, in words, that the number of grams of
vitamins provided in the package must be greater than or equal to the number of grams
required by the specified profile. Laying out those words in the format of an inequality,
we can write

Grams of vitamins provided ≥ Grams of vitamins required

where we chose to place “grams required” on the RHS because it is represented by a
parameter of the model (16 grams, in this case). Converting the inequality to symbols,
we can then write

Vitamin content = 10S + 20R + 10F + 30P + 20W ≥ 16 (Vitamin floor)

Similar constraints must hold for mineral protein, and calorie content. The entire
model, stated in algebraic terms, reads as follows.

Minimize z = 4S + 5R + 3F + 7P + 6W

subject to

10S + 20R + 10F + 30P + 20W ≥ 16

5S + 7R + 4F + 9P + 2W ≥ 10

1S + 4R + 10F + 2P + 1W ≥ 15

500S + 450R + 160F + 300P + 500W ≥ 600

In this basic scenario, no other constraints arise, although we could imagine that there
could also be limited quantities of the ingredients available, expressed as LT con-
straints, or a weight requirement for the package, expressed as an EQ constraint.

A spreadsheet model for the basic scenario appears in Figure 2.10. Again, we see
the three modules: a highlighted row for decision variables, a highlighted single cell
for the objective function value, and a set of constraint relationships with highlighted
RHS’s. If we were to display the formulas for this model, we would again see that the
only formula in the worksheet is the SUMPRODUCT formula.

Once we have persuaded ourselves that the model is valid, we proceed to the
Model tab in the task pane and enter the following information

Objective:
Variables:
Constraints:

G8 (minimize)
B5:F5
G11:G14 ≥ I11:I14

As in the allocation model, we move to the Engine tab, specify the linear solver, and
invoke the option for nonnegative variables.

After contemplating some hypotheses about the problem (e.g., will the solution
require all five ingredients?) we run Solver and find the result message in the solution
log. The optimal solution is reproduced in Figure 2.11. It calls for 0.48 lb of seeds,
0.33 lb of raisins, and 1.32 lb of flakes, with no nuts at all. Evidently, nuts are prohi-
bitively expensive, given the nature of the required nutritional profile and the other
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ingredients available. The optimal mix achieves all of the nutritional requirements at a
minimum cost of $7.54. The tight constraints in this solution are the requirements for
minerals, protein, and calories.

Herrick Foods might decide that trail mix without nuts is not an appealing pro-
duct. This concern illustrates another situation where the solution to the model may
not represent a solution to the practical problem. In building the model, we have not
considered the implication of a product without nuts. Alerted to this possibility, we
may wish to revisit the model and make sure that some nuts appear in the optimal
mix. One way to do so is to require a minimum of 0.15 lb of both pecans and walnuts

Figure 2.11. Optimal solution for the Herrick Foods model.

Figure 2.10. Model for Herrick Foods example.
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in the mix. In Figure 2.12, we show an amended model that requires at least 0.15 lb of
every ingredient.

The value of 0.15 appears just below the corresponding decision variable, and in
the Model tab of the task pane, we add the constraint that the range B5:F5 must be
greater than or equal to the range B6:F6. After this update, we revise the model
specification as follows

Objective:
Variables:
Constraints:

G8 (minimize)
B5:F5
B5:F5 ≥ B6:F6
G11:G14 ≥ I11:I14

The requirement that a particular decision variable must be greater than or equal to a
given value is called a lower bound constraint. Here, the first set of constraints is for-
mulated as a range of lower bound constraints. Similarly, a requirement that a particu-
lar decision variable must be less than or equal to a given value would be called an
upper bound constraint. (We could have used such constraints in the product mix
model, but in Figure 2.9 we posed them in the standard SUMPRODUCT style, so
that they resembled the other constraints in the model.)

After including the lower bound constraints, running Solver again produces the
optimal solution shown in Figure 2.13. By using linear programming and acknowled-
ging a requirement to include all five ingredients in the ultimate mixture, Herrick
Foods has identified the desired composition of its trail mix product.

Imposing lower bounds on the original Herrick Foods model leads to an optimal
solution that contains all five of the ingredients. We might have expected that nuts
would appear exactly at their lower limit because without the lower bound constraints,
the optimization left nuts completely out of the solution. Thus, when we added the
lower bound, there was no incentive to include nuts at any level greater than the

Figure 2.12. Herrick Foods model with additional constraints.
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lower bound. The optimal cost is also higher in the amended model than in the orig-
inal, at $8.33. This result again reflects the intuitive principle that adding constraints to
a model cannot improve the objective function—it will be the same or worse when
constraints are added.

The trail mix example is a simplified version of a classic covering problem known
as the diet problem. This problem arises, for example, in the determination of weekly
menus for large institutional populations, such as those in nursing homes, prisons, and
summer camps. The purpose of the model is to determine meal selection for each of
the 21 meals served each week to everyone in a large group. The variables may rep-
resent quantities of various food groups (meats, vegetables, fruits, etc.), and weekly
nutritional requirements reflect limits on the totals of weekly requirements for fat, cal-
ories, protein, carbohydrates, and so on. A common phenomenon, akin to the results of
our first trail mix model, is that cost minimization drives the solution toward a limited
number of meals. Campers may not find a steady diet of tofu appealing, even if that is
the model’s optimal solution. Subtle differences between the problem and the model
become clearer once a solution is obtained. For that reason, a more detailed and com-
plicated set of constraints must often be added to the diet model in order to generate an
appetizing weekly menu.

2.3.1. The Staff-Scheduling Problem

Many service industries face the problem of scheduling their workforce to meet fluc-
tuating staffing requirements. Nurses, telephone operators, toll collectors, and bus dri-
vers operate in this type of environment—providing service over a period that extends
beyond the normal 8 hr working day and possibly continuing around the clock. Many
companies restrict themselves to full-time workers and they meet fluctuating

Figure 2.13. Optimal solution to the modified Herrick Foods model.
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requirements of this sort by assigning staff to overlapping work shifts. As an example,
consider the daily staffing problem at Acme Communications.

EXAMPLE 2.3 Acme Communications

Acme Communications operates a regional call center where the workday is broken down into
six 4-hour shifts, and each operator works two consecutive shifts. The table below describes staff
requirements on each shift.

Shift number #1 #2 #3 #4 #5 #6

Time period 2 am–6 am 6 am–10 am 10 am–2 pm 2 pm–6 pm 6 pm–10 pm 10 pm–2 am

Requirement 10 20 45 40 50 12

The call center’s manager wishes to assign operators to the six available starting times so that
the staffing requirements are covered in each period and the total workforce size is as small
as possible. B

For Acme’s problem, the decision variables are the number of operators assigned
to each of the six starting times. For example, let x1 represent the number assigned to
begin work on shift #1. These operators work during shifts #1 and #2, from 2 am to
10 am. Similarly, x2 represents the number assigned to work during shifts #2 and
#3, from 6 am to 2 pm. With this notation, the number of operators working during
shift #2 must equal x1 + x2. By a similar logic, the number of operators working
during shift #3 must equal x2 + x3, and so on. Finally, the number working during
shift #1 must equal x6 + x1 because the requirements repeat in 24-hour cycles. An
algebraic statement of the problem is shown below.

Minimize z = x1 + x2 + x3 + x4 + x5 + x6

subject to

x1 + x6 ≥ 10

x1 + x2 ≥ 20

x2 + x3 ≥ 45

x3 + x4 ≥ 40

x4 + x5 ≥ 50

x5 + x6 ≥ 12

Figure 2.14 shows a spreadsheet model for this problem.
Staffing models of this sort have a distinctive structure. First, because the number

of operators working on any given shift is the total assigned to two starting times, two
variables appear in each constraint. Thus, in the spreadsheet, there are two 1s on the
LHS of each constraint row. Second, because operators work two consecutive
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shifts, two consecutive 1s appear in the columns corresponding to variables. (In the
case of x6, shifts #6 and #1 are consecutive.) The model specification is as follows

Objective:
Variables:
Constraints:

H8 (minimize)
B5:G5
H11:H16 ≥ J11:J16

Figure 2.14 displays an optimal solution, which achieves a total workforce of 105 by
assigning various numbers of operators to five starting times, with no one starting
work at 10 pm.

In general, we can structure the staff-scheduling model around the shift definition.
Time periods correspond to rows in the model and alternative shift assignments cor-
respond to columns. For a problem in which the assignments correspond to days, we
can imagine seven constraints (each one representing a daily staffing requirement) and
seven assignments (each one corresponding to a different start of a 5-day work stretch).
In the constraints module, the column of coefficients under a given shift assignment
shows the profile of the work shift. In Figure 2.14, those coefficients are two consecu-
tive 1s, reflecting the fact that each assignment comprises two consecutive 4-hour time
periods. In a more detailed version with 2-hour time periods, we can imagine four con-
secutive 1s. In an hourly version, we can imagine eight consecutive 1s. In most appli-
cations, however, when the time periods are this detailed, provisions are usually made
for meal breaks as well. As an example, imagine a service facility that operates over a
12-hour span from 6 am to 6 pm. Shifts begin on the hour and contain 8 hours of work

Figure 2.14. Staffing model.
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with an hour break in the middle. In this case, the columns of the model would appear
as follows:

Start: 6 am 7 am 8 am 9 am

1 0 0 0 6−7 requirements
1 1 0 0 7−8 requirements
1 1 1 0 8−9 requirements
1 1 1 1 9−10 requirements
0 1 1 1 10−11 requirements
1 0 1 1 11−12 requirements
1 1 0 1 12−1 requirements
1 1 1 0 1−2 requirements
1 1 1 1 2−3 requirements
0 1 1 1 3−4 requirements
0 0 1 1 4−5 requirements
0 0 0 1 5−6 requirements

For the particular set of hourly staff requirements shown in Figure 2.15, the optimal
staff size is 57.

Figure 2.15. Hourly Staffing model.
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However, if work rules allow the lunch break to occur after as few as three hours
of work or as many as five hours of work, then 12 full-time shift assignments are
available, rather than four. The shift start times would remain the same, but the column
profiles would take the following form.

Start: 6 6 6 7 7 7 8 8 8 9 9 9

1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 1 1 1 1
1 1 1 1 1 0 1 0 1 0 1 1
1 1 1 1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1

With these rules in place, the optimal staff size drops to 54. The example illus-
trates how an “optimal” solution can disguise possible inefficiency until we view
the problem from a broader perspective. The solution in the four-shift model of
Figure 2.15 is optimal for the situation it describes, but the rigidity of the rules govern-
ing shift patterns leads to inefficiency. When these rules become more flexible, then a
more efficient solution is attainable. In contrast to the effect of additional constraints,
additional flexibility can improve the objective function. Nevertheless, a good deal of
overstaffing occurs in either model. We might have to look beyond the optimization
model to avoid some of this remaining inefficiency. For example, if we can create
incentives that shift customer demands from one period to another, we can influence
the size of the optimal staff.

One variation of the staff-scheduling problem combines full and part-time shifts.
We can imagine full-time shifts as columns in which the 1s delineate an eight-hour
workday, whereas the part-time shifts might be columns containing a smaller
number of 1s. Such models usually have an objective function that measures the
cost of the workforce rather than its size, to reflect salary differences between
full- and part-time workers. In all these variations, however, the essential structure
of the model represents a covering problem by minimizing workforce cost or work-
force size subject to a systematic set of GT constraints for time-dependent staffing
requirements.

2.4. BLENDING MODELS

Blending relationships are very common in linear programming applications, yet
they remain difficult for beginners to identify in problem descriptions and to
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implement in spreadsheet models. Because of this difficulty, we begin with a special
case—the representation of proportions. As an example, let’s return to the product
mix version of Example 2.1. In Figure 2.9 the optimal product mix consisted of 16
chairs, 120 desks, and 144 tables. Suppose that this outcome is unacceptable because
of the imbalance in volumes. For more balance, the Marketing Department might
require that each product must make up at least 20% of the units sold.

When we describe outcomes in terms of a proportion, and when we place a floor
(or ceiling) on the proportion, we are using a special type of blending constraint. In our
example, a direct statement of the requirement for chairs is the following

C

C + D + T
≥ 0.2

This GT constraint has a parameter on the RHS and all the decision variables on the
LHS, as is usually the case. Although this is a valid constraint, it is not in linear form
because the quantities C, D, and T appear in both the numerator and denominator of the
fraction. (The ratio divides decision variables by decision variables.) However, we can
convert the nonlinear inequality to a linear one with a bit of algebra. First, multiply
both sides of the inequality by (C + D + T ), yielding

C ≥ 0.2(C + D + T)

Next, collect terms involving the decision variables on the LHS, so that we get

0.8C − 0.2D − 0.2T ≥ 0

This form conveys the same requirement as the original fractional constraint, and we
recognize it immediately as a linear form. The coefficients on the LHS turn out to be
either the complement of the 20 percent floor (1 – 0.2) or the floor itself (but with a
minus sign). In a similar fashion, the requirement that the other products must respect
the floor leads to the following two constraints

0.8D − 0.2C − 0.2T ≥ 0

0.8T − 0.2C − 0.2D ≥ 0

Appending these three constraints to the product mix model gives rise to the linear
program described in Figure 2.16. In the figure, we show the spreadsheet after the
model has been optimized. Before the constraints were added, the optimal mix gener-
ated profits of $4672. With the 20 percent floor imposed, we expect optimal profits to
drop. As shown in Figure 2.16, the new optimal mix becomes 48 chairs, 120 desks,
and 72 tables. Thus, swapping chairs for tables in the product mix, we can achieve
the best possible level of profit, achieving a total of $4176. As we might have expected,
chairs make up exactly 20 percent of the optimal output in this solution, while desks
and tables each account for more than 20 percent.

Whenever we encounter a constraint in the form of a lower limit or an upper limit
on a proportion, we can follow similar steps.
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† Write the fraction that expresses the constrained proportion.

† Write the inequality implied by the lower limit or upper limit.

† Multiply through by the denominator and collect terms.

The result should be a linear inequality, ready to incorporate in the model.
In general, the blending problem involves mixing materials that have different

individual properties and describing the properties of the blend with weighted
averages. We might be familiar with the phenomenon of mixing from spending
time in a chemistry laboratory mixing fluids with different concentrations of a particu-
lar substance, but the concept extends beyond laboratory work. Consider the example
of Keogh Coffee Roasters.

EXAMPLE 2.4 Keogh Coffee Roasters

Keogh Coffee Roasters blends three types of coffee beans (Brazilian, Colombian, and Peruvian)
into ground coffee that is sold at retail. Each kind of bean has a distinctive aroma and taste, and
the company has a chief taster who can rate the fragrance of the aroma and the strength of the
taste on a scale of 1 to 100. The features of the beans are tabulated below.

Figure 2.16. Modified product mix model.
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Aroma Strength Cost per
Bean Rating Rating Pound

Brazilian 75 15 $0.50
Colombian 60 20 $0.60
Peruvian 85 18 $0.70

Keogh would like to create a blend that has an aroma rating of at least 78 and a strength rating of
at least 16. However, its supplies of the various beans are limited. The available quantities are
1500 lb of Brazilian, 1200 lb of Colombian, and 2000 lb of Peruvian beans, all delivered under a
previously arranged purchase agreement. Keogh wants to make 4000 lb of the blend at the
lowest possible cost. B

For a little background on blending arithmetic, suppose that we blend Brazilian
and Peruvian beans in equal quantities of 25 lb each. Then we should expect the
blend to have an aroma rating of 80, just halfway between the two pure ratings of
75 and 85. Mathematically, we take the weighted average of the two ratings

Aroma rating = 75(25) + 85(25)
25 + 25

= 4000
50

= 80

Now suppose that we blend the beans in amounts B, C, and P. The blend has an aroma
rating calculated by a weighted average of the three ratings

Aroma rating = 75B + 60C + 85P

B + C + P

To impose a constraint that requires the aroma rating to be at least 78, we write

75B + 60C + 85P

B + C + P
≥ 78

Once again, this constraint is nonlinear, by virtue of having decision variables in the
denominator of the fraction. However, as shown above, we can convert the require-
ment into a linear constraint. First, multiply both sides of the inequality by (B +
C + P), yielding

75B + 60C + 85P ≥ 78(B + C + P)

Next, collect terms involving the decision variables on the left-hand side, to obtain

−3B − 18C + 7P ≥ 0

This form conveys the same requirement as the original fractional constraint, but in
linear form. The coefficients on the left-hand side turn out to be just the differences
between the individual aroma ratings (75, 60, 85) and the requirement of 78, with
signs indicating whether the individual rating is above or below the target. In a similar
fashion, a requirement that the strength of the blend must be at least 16 leads to the
constraint

−1B + 4C + 2P ≥ 0
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In general, the natural way to describe a blending requirement uses fractions, but
in that form, blending requirements are nonlinear. We prefer to convert these require-
ments to linear constraints because with a linear model we can harness the full power
of the linear solver. As we shall see later, the nonlinear solver has more limitations than
the linear solver.

Now, with an idea of how to restate the blending requirements, we return to
Example 2.4. In addition to the blending constraints, we need a constraint that gener-
ates a 4000-lb blend, along with three constraints that limit the supplies of the different
beans. The algebraic problem statement is as follows.

Maximize z = 0.50B + 0.60C + 0.70P

subject to

− 3B − 18C + 7P ≥ 0

− 1B + 4C + 2P ≥ 0

B + C + P ≥ 4000

B ≤ 1500

C ≤ 1200

P ≤ 2000

Figure 2.17 shows the spreadsheet for our model, which contains a GT constraint
and three LT constraints, in addition to the two blending constraints. In a sense, the

Figure 2.17. Keogh Coffee Roasters model.
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model has what we might think of as covering and allocation constraints, in addition to
blending constraints. The Blending Data module, in rows 10–12, is not strictly part of
the optimization model. We’ll come back to this part of the worksheet later. Each con-
straint in rows 15–20 is expressed in our standard form: a SUMPRODUCT formula
on the LHS and a parameter on the RHS. This model contains three LT constraints and
three GT constraints. It is helpful to keep constraints of the same type in adjacent
locations on the worksheet, for convenience in entering the constraint information
in the task pane. In this case, with only two entries in the Add Constraint window,
we can specify all six inequalities.

The output constraint is formulated as an inequality. Although Keogh Coffee
Roasters wishes to produce 4000 lb, our model allows the production of a larger quan-
tity if this will reduce costs. (Our intuition probably tells us that we should be able to
minimize costs with a 4000-lb blend, but we would accept a solution that reduced costs
while producing more than 4000 lb: we could simply throw away the excess.) In many
situations, it is a good idea to use the weaker form of the constraint, giving the model
some “additional rope” and avoiding EQ constraints. In other words, we should build
the model with some latitude in satisfying the constraints of the decision problem
whenever possible. The solution will either confirm our intuition (as this one does)
or else teach us a lesson about the limitations of our intuition.

The model specification is the following

Objective:
Variables:
Constraints:

E8 (minimize)
B5:D5
E15:E17 ≥ G15:G17
E18:E20 ≤ G18:G20

The linear solver produces an optimal blend of 1500 lb of Brazilian, 520 lb of
Colombian and 1980 lb of Peruvian beans, for a total cost of $2448, as shown in
the figure. By using linear programming, Keogh Coffee Roasters can optimize the
cost of its blend while meeting its taste and aroma requirements. Of the two blending
constraints, only the first (aroma) constraint is binding in this solution; the optimal
blend actually has better-than-required strength. The output constraint is also binding
(consistent with our intuitive expectation), as is the limit on Brazilian supply.

In Figure 2.19, we calculate the actual aroma and taste ratings in cells E11:E12,
using the weighted-average ratio formula directly. For example, the calculation in cell
E11 uses the formula =SUMPRODUCT($B$5:$D$5,B11:D11)/E17. Thus, where-
as the first constraint of the model is binding (LHS and RHS of row 15 both equal to
zero), the aroma calculation in the Blending Data module shows that the weighted aver-
age equals the requirement of 78 exactly. Although the second constraint shows that the
strength requirement is not binding, the comparison of LHS (4540) with RHS (zero) is
not as helpful as a means of interpreting the slack in the constraint. However, cell E12
shows that the optimal blend’s strength is 17.14, which we can easily compare to the
requirement of 16.

Blending problems arise whenever weighted averages characterize the properties
of a composite product. In our example, we treated taste and aroma as if they were
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numerically objective measures, for the purposes of illustration. However, it is not dif-
ficult to enumerate some applications where the parameters are “harder” numbers and
blending concerns are relevant.

† Gasoline is a blend, and the octane rating of gasoline is a weighted average of
its constituents. The inputs into a gasoline blend have different octane ratings as
a function of their crude oil source and their previous processing steps. The
classification of gasoline blends as regular, premium, or super premium is
usually based on a minimum octane rating in each category. The principle of
weighted average blending applies as well to other fluids, such as the viscosity
of lubricants, the sugar content of fruit juice or the fat content of ice cream.

† Chemical compounds other than fluids often have such constituents as nickel,
copper, sulfur, potassium, and the like. These constituents may have functional
benefits, or they may be considered impurities. In either event, different com-
pounds have different percentage compositions of these elements, and compo-
sitions blend according to weighted averages when elements are mixed
together. The principle of weighted averages applies to metal in alloys, pollu-
tants in emissions, or active ingredients in medications.

† Investment portfolios consist of discrete assets, such as stocks and bonds. Each
asset in the portfolio has its own financial characteristics, but properties of the
overall portfolio dictate admissible investment strategies. The principle of
weighted averages applies to maturities of bonds, rates of return on stocks,
and riskiness ratings of assets.

2.5. MODELING ERRORS IN LINEAR PROGRAMMING

We have presented our examples as if they were built by knowledgeable analysts, with
each step implemented correctly and all errors avoided. However, someone new to the
experience of building optimization models seldom makes it through all of the steps
without some kind of difficulty. Even experts run into problems, especially when
they are working on complex models. It is probably unrealistic to expect that the pro-
cess of building and analyzing a model can be carried out without encountering some
sort of difficulty along the way. To be effective in modeling, we have to know how to
deal with errors when they occur.

2.5.1. Exceptions

Given a linear programming model, Solver always finds an optimal solution, provided
one exists. The first kind of modeling error is formulating a model that does not have
an optimal solution. Two exceptions can cause difficulties: infeasible constraints and
an unbounded objective function.

A model contains infeasible constraints if no set of decision variables can
satisfy all constraints simultaneously. For example, in the product mix example of

2.5. Modeling Errors in Linear Programming 53



Figure 2.9, suppose we had signed a contract promising that 200 chairs would be deliv-
ered to a single large customer, as part of the product mix. Adding the requirement
C ≥ 200 to the other constraints of the model creates an inconsistency. (The implied
machining requirement would be 1800 hours, which exceeds the capacity available.)
Presented with a set of inconsistent constraints, Solver detects the inconsistency and
delivers the following result message in the solution log as well as at the bottom of
the task pane:

Solver could not find a feasible
solution.

Whenever this message appears, there must have been an inconsistency in the set of
constraints.

For the model builder, the task is to locate the inconsistency when confronted with
the infeasibility message. There are potentially two levels to this task: (1) finding the
offending constraint or constraints, and (2) identifying the source of the inconsistency.
Sometimes, the offending constraint can be discovered by “eyeballing” the model—
scanning for visual clues to the location of an error. For example, a parameter could
be entered incorrectly. (Perhaps the chair contract calls for only 20 units, but 200
has been entered inadvertently.) Alternatively, a constraint could be entered backward,
as a LT constraint when it should have been a GT constraint. However, the more stan-
dard way to search for an inconsistency is to remove constraints from the model, one
at a time, and to rerun Solver each time. (In large problems, it might make more sense
to remove several constraints at a time.) If the model remains infeasible, restore the
constraint and try removing a different one. If the model reaches an optimal solution,
then we know that something about the constraint we removed was a partial cause of
the infeasibility.

Identifying the source of an inconsistency refers to the part of the task that lies at
the interface between model and problem. If the inconsistency resulted from a typo,
then it is a simple matter to repair it. However, a more subtle difficulty arises when
the formulation contains too many constraints. This result can occur if, during the
modeling process, there was a thorough attempt to include all the considerations men-
tioned by various parties. Isolated desires and secondary considerations could wind up
being expressed as model constraints, contributing to a logical conflict. In these situ-
ations, it makes sense to eliminate some of the constraints, so that the model is at least
feasible. Thereafter, various additional considerations can be revisited, to see whether
they can be accommodated without causing infeasibility.

The second kind of modeling error occurs when there is no limit to the objective
function in the direction of optimization. An unbounded objective function occurs if,
with a set of feasible decisions, the objective can grow infinitely positive in a maximi-
zation problem or infinitely negative in a minimization problem. The most common
cause of an unbounded objective is failure to invoke the Assume Non-Negative
option. For example, in the trail mix example of Figure 2.11, suppose we had forgotten
to set the option to True. Then it would be mathematically possible to make the objec-
tive function as negative as we wish by taking negative quantities for some of the
ingredients. Consider the mix corresponding to R ¼ 115, P ¼ –40, and W ¼ –50.
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This combination satisfies all four constraints, with a total cost of –$5.00. Mathemat-
ically, this mix could be expanded in the same proportion, with all constraints met
and the total cost becoming as negative as we like. Presented with conditions that
permit an objective function to expand infinitely in the direction of optimization,
Solver detects the unbounded possibilities and delivers the following result message
in the solution log as well as at the bottom of the task pane:

The objective (Set Cell) values do
not converge.

The reference to “Set Cell” provides consistency with older versions of the software,
which did not use the term “objective.”

For the model builder, the task is to locate the cause of an unbounded objective
function. The problem could lie in the objective function or in the constraints. A
simple typo in an objective function cell could induce unbounded possibilities.
However, unboundedness can also occur when a constraint is omitted from the
model, allowing decision variables to reach values never intended by the model
builder. Whereas locating the cause of infeasibility directs attention to the constraints,
it is more difficult to know where to look for the cause of unboundedness.

2.5.2. Debugging

Even a model that contains feasible constraints and a bounded objective function can
be logically flawed. Beyond its ability to detect infeasible and unbounded formu-
lations, Solver has no automatic means of detecting logical errors. That responsibility
lies with the model builder. However, a few techniques that are helpful to spreadsheet
users can augment the capabilities in Solver.

† Set all decision variables to zero. A good first step is to enter zero for each of
the decision variables and confirm that the objective function and constraints
behave as expected. Then, make one variable at a time positive. Taking succes-
sive values for a variable equal to 1, 10, and 100 can show whether the scaling
properties of the model seem valid.

† Display formulas. By simultaneously pressing the Control and tilde (�) keys,
we can look at all the formulas in the spreadsheet window. As in Figure 2.2, we
look for the SUMPRODUCT formulas in the cells corresponding to the objec-
tive function and the LHS of each constraint. No other formulas are necessary,
although in the next chapter we shall look at some cases where an alternative
form is convenient. Pressing the Control and tilde keys simultaneously once
more restores the display.

† Invoke Formula Auditing. The Formula Auditing tools appear on the Formulas
tab. In Figure 2.18, we have selected, one at a time, each of the constraint for-
mulas and selected the Trace Precedents icon for each one. The resulting logical
map exhibits a systematic structure that helps validate the formulas. An
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asymmetric set of precedence arrows might suggest where a logical error can be
found.

† Invoke the Cell Edit function. Selecting a formula cell and pressing the func-
tion key F2 can implement a similar kind of validation. The Cell Edit function
displays a color-coded interpretation of the formula, highlighting its constituent
cells. In linear programming models, this kind of verification might catch a for-
mula in which the range was entered or pasted incorrectly.

† Use the Change Constraint option. Another way to verify that ranges are cor-
rectly entered involves the Change Constraint window. In the Model tab,
double-click the icon for a particular constraint entry. Then the LHS’s of the
selected constraints are highlighted in the model when the Change Constraint
window appears. This step can sometimes detect an error in specifying the
location of a constraint, especially in complicated models where constraints
might be arranged separately, at different locations on the worksheet.

2.5.3. Logic

In Chapter 1, we pointed out the distinction between the convergence message and the
optimality message in finding an optimal solution with the nonlinear solver. When we
use the linear solver, that distinction does not arise. If we formulate a model that is
feasible and bounded and if we use the linear solver, then the optimality message
appears every time; we do not need to rerun Solver.

Figure 2.18. Formula Auditing with the trace precedence command.
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SUMMARY

This chapter has introduced three classes of linear programming models: allocation, covering,
and blending. To some extent, these elementary models allow us to discuss the basic scenarios
that lend themselves to linear programming models, so allocation, covering, and blending
models might well be taken as the “ABC” of model building with linear programming.
Allocation, covering and blending models are also important as building blocks for more com-
plex models because many practical applications are combinations of these structures.

Linearity in both the objective function and constraints is the key structural assumption in
linear programming. In the process of building a linear programming model, it is desirable to
revisit the requirements of proportionality, additivity, and divisibility, to confirm that their prop-
erties apply. Another less prominent assumption is the presumption of certainty in the elements
of a linear programming model. Most of the time, linear programs are applied in situations where
uncertainty can be suppressed without undermining the value of the model. Nevertheless,
advanced forms of linear programming extend to situations where the uncertainty cannot be
avoided. Appendix 4 introduces Stochastic Programming, to suggest how linear programming
can be adapted to problems containing uncertainty.

Classification of linear programming models provides some immediate benefits. When we
are trying to understand someone else’s model, our ability to classify may help us appreciate
either the overall structure of a model or some of its major parts. Also, when we are trying to
develop a model from scratch, we can accelerate the process if we can classify the model or
at least one portion of it. Model building requires that we recognize situations that lend them-
selves to representation in a model. Familiarity with the elementary scenarios that go with allo-
cation, covering, and blending helps us to recognize structure in an actual situation. Finally,
when we are debugging our own model, classification allows us to compare what we have
built with the standard template. That comparison helps us to detect mistakes we may have
made in constraint coefficients and constants or perhaps even in objective function coefficients.
Also included in this chapter were a number of suggestions for debugging that apply throughout
the remainder of the book.

The classification of linear programs is not as precise as, say, biological classification. As
we saw, a linear program can combine types. Although we will encounter additional classes of
models in the next three chapters, we will not attempt to classify every possible linear program.
Instead, the purpose is to appreciate the kinds of situations that lend themselves well to linear
programming. Then, when we encounter similar situations in the world around us, we’ll be
able to think about those situations in terms of a corresponding linear programming structure.
Armed with knowledge of these building blocks, we can analyze new situations by recognizing
familiar structures within them, thus identifying some of the important elements (variables and
constraints) of the eventual model.

EXERCISES

2.1. Brown Furniture Revisited Revisit the Brown Furniture allocation example of this
chapter. As plans are being made for a new quarter, a revised set of figures on resource
availabilities is compiled. The new resource limits are as follows.

Fabrication hours 2000
Assembly hours 1800
Machining hours 1600
Wood supply 9400
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The other data, on profit contributions and resource consumptions, all remain unchanged.

(a) What are the optimal production quantities of chairs, desks and tables?

(b) What is the maximum profit contribution?

(c) Which constraints are binding in the optimal solution?

2.2. Allocating Ingredients The Pizza Man is a local shop that plans to make all of its sales
this Saturday from its sidewalk tables during the town’s holiday parade. On this occasion,
the shop’s owners know that customers will buy by the slice and any kind of pizza offered
will sell. The Pizza Man offers plain, meat, vegetable, and supreme pizzas. Each variety
has its own requirement for sauce, cheese, dough, and toppings (in ounces, as shown in
the table), and each has its own selling price.

Plain Meat Vegetable Supreme Available

Dough 5 5 5 5 200
Sauce 3 3 3 3 90
Cheese 4 3 3 4 120
Meat 0 3 0 2 75
Vegetables 0 0 3 2 40

Price $8 $10 $12 $15

The Pizza Man expects to use its entire stock of ingredients and wishes to maximize rev-
enue from its sales.

(a) What mix of pizzas should be made? (Assume that fractions can be sold.)

(b) What is the maximum sales revenue?

(c) Which ingredients are economically scarce (limit profits)?

2.3. Workforce Scheduling The Operations Manager at the Metropolis National Bank
has a staffing problem. Demand for clerical staff varies throughout the day, but 24-
hour coverage is necessary because the bank handles a number of international trans-
actions. A recent study has shown how many clerical workers are needed each hour in
the course of the day, as shown below. (Hour 1 is from midnight to 1am.)

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Staff 4 3 2 2 3 5 6 6 9 10 10 10

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Staff 12 12 8 6 7 7 7 6 5 4 4 4

Under current labor policies, clerical workers may be assigned to any one of six shifts,
some of which overlap. The shifts and salary costs are as follows.
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Shift Daily cost

2 am–10 am $160
6 am–2 pm $145
10 am–6 pm $148
2 pm–10 pm $154
6 pm–2 am $156
10 pm–6 am $160

(a) Provide the operations manager with a schedule that will deploy enough staff to meet
the hourly requirements at the minimum daily total cost.

(b) In the optimal schedule, how many hours are overstaffed?

2.4. Selecting a Portfolio A portfolio manager has developed a list of six investment
alternatives for a multiyear horizon. These are: Treasury bills, Common stock,
Corporate bonds, Real estate, Growth funds, and Savings and Loans. These investments
and their various financial factors are described below. In the table, the length represents
the estimated number of years required for the annual rate of return to be realized. The
annual rate of return is the expected rate over the multiyear horizon. The risk coefficient
is a subjective estimate representing the manager’s appraisal of the relative safety of each
alternative, on a scale of 10. The growth potential is also a subjective estimate of the
potential increase in value over the horizon.

Portfolio data

Alternative TB CS CB RE GF SL

Length 4 7 8 6 10 5
Annual return (%) 6 15 12 24 18 9
Risk coefficient 1 5 4 8 6 3
Growth potential (%) 0 18 10 32 20 7

The manager wishes to maximize the annual rate of return on a $3 million portfolio,
subject to the following restrictions.

The weighted average length should not exceed 7 years.

The weighted average risk coefficient should not exceed five.

The weighted average growth potential should be at least 10 percent.

The investment in real estate should be no more than twice the investment in stocks
and bonds (i.e. in CS, CB, and GF) combined.

(a) What is the optimal return (as a percentage) and the optimal allocation of investment
funds?

(b) What is the marginal rate of return? In other words, what would be the return on the
next dollar invested, if there were one more dollar in the portfolio?

(c) For additional investment beyond the original $3 million, how will the optimal
allocation change?
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2.5. Oil Blending An oil company produces three brands of oil: Regular, Multigrade, and
Supreme. Each brand of oil is composed of one or more of four crude stocks, each
having a different lubrication index. The relevant data concerning the crude stocks are
as follows.

Crude Lubrication Cost Supply per day
stock index ($/barrel) (barrels)

1 20 7.10 1000
2 40 8.50 1100
3 30 7.70 1200
4 55 9.00 1100

Each brand of oil must meet a minimum standard for a lubrication index, and each brand
thus sells at a different price. The relevant data concerning the three brands of oil are as
follows.

Minimum Selling Daily
lubrication price demand

Brand index ($/barrel) (barrels)

Regular 25 8.50 2000
Multigrade 35 9.00 1500
Supreme 50 10.00 750

Determine an optimal output plan for a single day, assuming that production can be either
sold or else stored at negligible cost.

The daily demand figures are subject to alternative interpretations. Investigate the
following:

(a) The daily demands represent potential sales. In other words, the model should con-
tain demand ceilings (upper limits). What is the optimal profit?

(b) The daily demands are strict obligations. In other words, the model should contain
demand constraints that are met precisely. What is the optimal profit?

(c) The daily demands represent minimum sales commitments, but all output can be
sold. In other words, the model should permit production to exceed the daily commit-
ments. What is the optimal profit?

2.6. Coffee Blending and Sales Hill-O-Beans Coffee Company blends four component
beans into three final blends of coffee: one is sold to luxury hotels, another to restaurants,
and the third to supermarkets for store-label brands. The company has four reliable bean
supplies: Argentine Abundo, Peruvian Colmado, Brazilian Maximo, and Chilean Saboro.
The table below summarizes the very precise recipes for the final coffee blends, the cost
and availability information for the four components, and the wholesale price per pound
of the final blends. The percentages indicate the fraction of each component to be used in
each blend.
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Component
(pounds)

Cost per Max. weekly
Hotel Rest Market pound availability

Abundo 20% 35% 10% $0.60 40,000
Colmado 40% 15% 35% $0.80 25,000
Maximo 15% 20% 40% $0.55 20,000
Saboro 25% 30% 15% $0.70 45,000

Wholesale price
per pound

$1.25 $1.50 $1.40

The processor’s plant can handle no more than 100,000 lb per week, and Hill-O-Beans
would like to operate at capacity, if possible. Selling the final blends is not a problem,
although the Marketing Department requires minimum production levels of 10,000,
25,000, and 30,000 lb, respectively, for the hotel, restaurant and market blends.

(a) To maximize weekly profit, how many pounds of each component should be
purchased?

(b) How would the optimal profit change if there were a 1000-lb increase in the avail-
ability of Abundo beans? Colmado? Maximo? Saboro?

2.7. Production Planning for Components Rummel Electronics produces two PC cards, a
modem and a network adapter. Demand for these two products exceeds the amount that
the firm can make, but there are no plans to increase production capacity in the short run.
Instead, the firm plans to use subcontracting.

The two main stages of production are fabrication and assembly, and either step can
be subcontracted for either type of card. However, the company policy is not to subcon-
tract both steps for either product. (That is, if modem cards are fabricated by a subcontrac-
tor, then they must be assembled in house.) Components made by subcontractors must
pass through the shipping and receiving departments, just like components made intern-
ally. At present, the firm has 5200 hours available in fabrication, 3600 in assembly and
3200 in shipping/inspection. The production requirements, in hours per unit, are given
in the following table:

Product/mode Fabrication Assembly Shipping

Modem, made entirely in-house 0.35 0.16 0.08
Network, made entirely in-house 0.47 0.15 0.12
Modem, fabricated by sub – 0.18 0.10
Network, fabricated by sub – 0.16 0.15
Modem, assembled by sub 0.35 – 0.09
Network, assembled by sub 0.47 – 0.14

The direct material costs for the modem cards are $3.25 for manufacturing and $0.50
for assembly; for network cards, the costs are $6.10 and $0.50. Subcontracting the man-
ufacturing operation costs $5.35 for modem cards and $8.50 for network cards.
Subcontracting the assembly operation costs $1.50 for either product. Modem cards
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sell for $20, and network cards sell for $28. The firm’s policy, for each product, is that at
most 40% of the units produced can have subcontracted fabrication, and at most 70% of
the units can have subcontracted assembly.

(a) Determine the production and subcontracting schedule that maximizes profits. How
many units of each product should be sold, in the optimal plan? What total volume
should the subcontractor handle?

(b) Which department capacities limit the manufacturing volume? If 100 hours of over-
time could be scheduled, which department(s) should be allocated the overtime?
Explain.

2.8. Production Planning for Automobiles The Auto Company of America (ACA) pro-
duces four types of cars: subcompact, compact, intermediate, and luxury. ACA also pro-
duces trucks and vans. Vendor capacities limit total production capacity to at most
1,200,000 vehicles per year. Subcompacts and compacts are built together in a facility
with a total annual capacity of 620,000 cars. Intermediate and luxury cars are produced
in another facility with capacity of 400,000; and the truck/van facility has a capacity
of 275,000. ACA’s marketing strategy requires that subcompacts and compacts must con-
stitute at least half of the product mix for the four car types. Profit margins, market poten-
tial, and fuel efficiencies are summarized below.

Profit margin Potential sales Fuel efficiency
Type ($/vehicle) (in 000s) (MPG)

Subcompact 150 600 40
Compact 225 400 34
Intermediate 250 300 15
Luxury 500 225 12
Truck 400 325 20
Van 200 100 25

The Corporate Average Fuel Efficiency (CAFE) standards require an average fleet fuel
efficiency of at least 27 MPG. ACA would like to use a linear programming model to
understand the implications of government and corporate policies on its production plans.

(a) What is the optimal annual profit for ACA?

(b) How much would annual profit drop if the fuel efficiency requirement were raised to
28 MPG?

2.9. Production Planning with Environmental Constraints You are the Operations
Manager of Lovejoy Chemicals, Inc., which produces five products in a common
production facility that will be subject to proposed Environmental Protection
Agency (EPA) limits on particulate emissions. For each product, Lovejoy’s sales poten-
tials (demand levels that Lovejoy can capture) are expected to remain relatively flat
for at least the next five years. Relevant data for each product are as follows (note:
T denotes tons).
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Sales Variable Particulate
potential costs Revenues emissions

Product (T/year) ($/T) ($/T) (T/T produced)

A 2000 700 1000 0.0010
B 1600 600 800 0.0025
C 1000 1000 1500 0.0300
D 1000 1600 2000 0.0400
E 600 1300 1700 0.0250

Your production facility rotates through the product line because it is capable of produ-
cing only one product at a time. The production rates differ for the various products
due to processing needs. It takes 0.3 hours to make one ton of A, 0.5 hours for B, and
one hour each to make a ton of C, D, or E. The facility can be operated up to 4000
hours each year.

The EPA is proposing a “bubble policy” for your industry. In this form of regulation,
imagine that a bubble encloses the manufacturing facility, and only total particulates that
escape the bubble are regulated. This sort of policy replaces historical attempts by the
EPA to micromanage emissions within a firm, and it allows Lovejoy to make any changes
it wishes, provided the total particulate emissions from its facility are kept below certain
limits. The current proposal is to phase-in strict particulate emissions limits over the next
five years. These limits on total particulate emissions are shown in the table below.

Year 1 2 3 4 5

Allowable
emissions
(T/year)

unlimited 80 60 40 20

One strategy for satisfying these regulations is to adjust the product mix, cutting back on
production of some products if necessary. Lovejoy wishes to explore this strategy before
contemplating the addition of new equipment.

(a) Determine the maximum profit Lovejoy can achieve from its product line in the
coming year (Year 1).

(b) By solving a series of models corresponding to the imposition and tightening of the
emissions limit in future years, determine Lovejoy’s maximum profits in each of
Years 2–5.

(c) Consider the emissions limit that applies in Year 4. Determine how much Lovejoy
should be willing to pay at that time to be allowed emissions of one extra ton of
particulates above the limit.

2.10. Cargo Loading You are in charge of loading cargo ships for International Cargo
Company (ICC) at a major East Coast port. You have been asked to prepare a loading
plan for an ICC freight ship bound for Africa. An agricultural commodities dealer
would like to transport the following products aboard this ship.

Exercises 63



Tons Volume per ton Profit per ton
Commodity available (cu. ft) ($)

1 4000 40 70
2 3000 25 50
3 2000 60 60
4 1000 50 80

You can elect to load any and/or all of the available commodities. However, the ship has
three cargo holds with the following capacity restrictions.

Cargo
hold

Weight capacity
(tons)

Volume capacity
(cu. ft)

Forward 3000 100,000
Center 5000 150,000
Rear 2000 120,000

More than one type of commodity can be placed in the same cargo hold. However,
because of balance considerations, the weight in the forward cargo hold must be within
10 percent of the weight in the rear cargo hold, and the center cargo hold must be between
40 percent and 60 percent of the total weight on board.

(a) What is the maximum profit and the loading plan that achieves it? What is the optimal
total weight to be loaded? What is the optimal total volume to be loaded?

(b) Suppose each one of the cargo holds could be expanded. Which holds and which
forms of expansion (weight or volume) would allow ICC to increase its profits on
this trip, and what is the marginal value of each form of expansion?

2.11. Computer Center Staffing You are the Director of the Computer Center for Gaillard
College and responsible for scheduling the staffing of the center. It is open from 8 am
until midnight. You have monitored the usage of the center at various times of the day
and determined that the following numbers of computer consultants are required.

Time of day

Minimum number of
consultants required

to be on duty

8 am–noon 4
Noon–4 pm 8
4 am–8 pm 10
8 am–midnight 6

Two types of computer consultants can be hired: full-time and part-time. The full-time
consultants work for eight consecutive hours in any of the following shifts: morning
(8 am–4 pm), afternoon (noon–8 pm), and evening (4 pm–midnight). Full-time consult-
ants are paid $14 per hour.
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Part-time consultants can be hired to work any of the four shifts listed in the table.
Part-time consultants are paid $12 per hour. An additional requirement is that during
every time period, at least one full-time consultant must be on duty for every part-time
consultant on duty.

(a) Determine a minimum-cost staffing plan for the center. In your solution, how many
consultants will be paid to work full time and how many will be paid to work part
time? What is the minimum cost?

(b) After thinking about this problem for a while, you have decided to recognize meal
breaks explicitly in the scheduling of full-time consultants. In particular, full-time
consultants are entitled to a one-hour lunch break during their eight-hour shift. In
addition, employment rules specify that the lunch break can start after three hours
of work or after four hours of work, but those are the only alternatives. Part-time con-
sultants do not receive a meal break. Under these conditions, find a minimum-cost
staffing plan. What is the minimum cost?

2.12. Make or Buy A sudden increase in the demand for smoke detectors has left Acme
Alarms with insufficient capacity to meet demand. The company has seen monthly
demand from its retailers for its electronic and battery operated detectors rise to 20,000
and 10,000, respectively, and Acme wishes to continue meeting demand. Acme’s pro-
duction process involves three departments: Fabrication, Assembly, and Shipping. The
relevant quantitative data on production and prices are summarized below.

Monthly hours Hours/unit Hours/unit
Department available (electronic) (battery)

Fabrication 2000 0.15 0.10
Assembly 4200 0.20 0.20
Shipping 2500 0.10 0.15

Variable
cost/unit

$18.80 $16.00

Retail price $29.50 $28.00

The company also has the option to obtain additional units from a subcontractor, who has
offered to supply up to 20,000 units per month in any combination of electronic and bat-
tery operated models, at a charge of $21.50 per unit. For this price, the subcontractor will
test and ship its models directly to the retailers without using Acme’s production process.

(a) What is the maximum profit and the corresponding make/buy levels? (This is a plan-
ning model, and fractional decisions are acceptable.)

(b) Trace the effects of increasing Fabrication capacity by 10 percent. How will the opti-
mal make/buy mix change? How will the optimal profit change?

2.13. Leasing Warehouse Space Cox Cable Company needs to lease warehouse storage
space for five months at the start of the year. It knows how much space will be required
in each month, and it can purchase a variety of lease contracts to meet these needs. For
example, it can purchase one-month leases in each month from January to May. It can
also purchase two-month leases in January through April, three-month leases in
January through March, four-month leases in January and February, or a five-month
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lease in January. In total, there are 15 possible leases it could use. It must decide which
leases to purchase, and how many square feet to purchase on each lease.

Since the space requirements differ month-to-month, it may be economical to lease
only the amount needed each month on a month-by-month basis. On the other hand, the
monthly cost for leasing space for additional months is much less than for the first month,
so it may be desirable to lease the maximum amount needed for the entire five months.
Another option is the intermediate approach of changing the total amount of space
leased (by adding a new lease and/or having an old lease expire) at least once but not
every month. Two or more leases for different terms can begin at the same time.

The space requirements (in square feet) and the leasing costs (in dollars per thousand
square feet) are given in the tables below.

Space Lease Lease
Month requirements length cost

Jan 15,000 1 month $280
Feb 10,000 2 months 450
Mar 20,000 3 months 600
April 5000 4 months 730
May 25,000 5 months 820

The task is to find a leasing schedule that provides the necessary amounts of space at the
minimum cost.

(a) Determine the optimal leasing schedule and the optimal total cost.

(b) Trace the effects of increasing the space required for January. How will the leasing
schedule change? How will the total cost change?

2.14. Production Planning The Kim Camera Company produces four different camera
models, known as C1–C4. Each model can be made by two different methods. The
manual method requires work in the Fabrication, Assembly, and Test departments,
while the automated method combines the Assembly and Test operations in one depart-
ment. The first table below describes the price and cost features of the camera models,
along with marketing information on the range of possible sales in the coming month.
Because model C1 is delivered to one large retailer under a long-term contract, a threshold
demand quantity of 1500 units must be met. For the other models, there is flexibility in
how much demand to meet, up to a ceiling that represents maximum possible sales.

C1 C2 C3 C4

Price 125 175 200 135
Manual cost 110 160 155 125
Auto cost 100 112 150 90
Manual margin 15 15 45 10
Auto margin 25 63 50 45
Sales max. 3000 2500 2000 3200
Sales min. 1500 0 0 0
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The next table provides data on the various departments at the firm, consisting of the time
per camera required in each department and the number of hours available in each depart-
ment during the month.

C1 C2 C3 C4 Hours

Manual fab. 3 5 4 4 16,000
Manual asy. 8 12 10 9 30,000
Manual test 2 3 5 2 15,000
Auto fab. 5 6 7 4 24,000
Auto asy/test 4 5 8 5 20,000

(a) What production plan will maximize profit for Kim Camera?

(b) How would the solution in (a) change if there were no threshold requirement for
Camera C1?

2.15. Make/Buy Planning The CammTex Fabric Mill is in the process of deciding on a pro-
duction schedule. It wishes to know how to weave the various fabrics it will produce
during the coming quarter. The sales department has confirmed orders for each of the
15 fabrics that are produced by CammTex. These quarterly demands are given in the
table below. Also tabulated is the variable cost for each fabric. The mill operates continu-
ously during the quarter: 13 weeks, 7 days a week, and 24 hours a day.

CammTex uses two types of looms: dobbie and regular. Dobbie looms can make all
fabrics, and they are the only looms that can weave certain fabrics such as plaids. The
production rate for each fabric on each type of loom is also given in the table. (If the
production rate is zero, the fabric cannot be woven on that type of loom.) CammTex
has 90 regular looms and 15 dobbie looms.

Fabrics woven at CammTex proceed to the finishing department in the mill and are
then sold. Any fabrics not woven in the mill because of limited capacity are subcontracted
to an outside producer and sold at the selling price. The cost of purchasing from the
subcontractor is also given in the table.

Demand Dobbie Regular Mill cost Sub. cost
Fabric (yd) (yd/hr) (yd/hr) ($/yd) ($/yd)

1 16,500 4.653 0.00 0.6573 0.80
2 52,000 4.653 0.00 0.555 0.70
3 45,000 4.653 0.00 0.655 0.85
4 22,000 4.653 0.00 0.5542 0.70
5 76,500 5.194 5.313 0.6097 0.75
6 110,000 3.767 3.809 0.6153 0.75
7 122,000 4.055 4.185 0.6477 0.80
8 62,000 5.208 5.232 0.488 0.60
9 7500 5.208 5.232 0.5029 0.70

10 69,000 5.208 5.232 0.4351 0.60
11 70,000 3.652 3.733 0.6417 0.80
12 82,000 4.007 4.185 0.5675 0.75
13 10,000 4.291 4.439 0.4952 0.65
14 380,000 5.208 5.232 0.3128 0.45
15 62,000 4.004 4.185 0.5029 0.70
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(a) What is minimum total cost of production and purchasing for CammTex?

(b) Which fabrics should be made at the mill and which should be purchased? For those
made at the mill, which loom types should be assigned to their production?

2.16. Production Scheduling The Seaboch Tire Company produces four lines of tires: the
Economy, the Glass-belted, the Snow and the Radial tire. The problem it faces is to sche-
dule two shifts of production during the last quarter of the calendar year. The production
process primarily involves the use of vulcanization, fabrication, and plastometer equip-
ment, but the limiting resource is the availability of the vulcanization machines. The
four tires require different amounts of time at vulcanization, as tabulated below.

Tire Econ. Glass Snow Radial

Hours/tire 4.5 5.0 5.5 6.0

A sales forecast is available, breaking down predicted sales (in thousands) by tire type and
by month.

Sales Oct Nov Dec

Econ. 8 7 6
Glass 18 16 18
Snow 4 15 15
Radial 6 5 8

In addition, the number of hours of vulcanizing time (in thousands), for each shift and for
each month, is also known.

Oct Oct Nov Nov Dec Dec

Shift 1 2 1 2 1 2
Hours 110 100 130 120 120 115

The labor cost of operating the vulcanizing machines is $10 per hour during the first shift
and $12 per hour during the second shift. The other relevant cost is storage: It costs $4 per
month for storage and handling at the warehouse, regardless of tire type. This cost is
incurred if there is not enough labor capacity to meet demand in the month when it occurs.

(a) What production plan will minimize cost and meet demand at Seaboch Tire?

(b) How would the solution in (a) change if sales for each tire in December were 10 per-
cent higher?

Case: JetGreen∗

JetGreen flies three airplanes, using a “hub and spoke” flight schedule between Houston and
three cities, Chicago, Miami, and Phoenix. These three cities are the “spokes” connected by
the Houston “hub.” Once each day, the three airplanes fly from the spoke cities to Houston.

∗Adapted from case material written by Professor Rob Shumsky of Dartmouth College.
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They arrive nearly simultaneously at Houston, then connecting passengers change aircraft
during a one-hour layover, and the three airplanes return to their starting cities. One set of six
flights (3 inbound to Houston and 3 outbound) is called a bank. A bank can serve passengers
flying on 12 different routes: three inbound direct routes (Chicago or Miami or Phoenix into
Houston), three outbound direct routes (Houston to Chicago or Miami or Phoenix), and six
routes requiring two flights each (Chicago–Miami, Chicago–Phoenix, Miami–Phoenix,
Miami–Chicago, Phoenix–Chicago, and Phoenix–Miami).

JetGreen charges a regular price for a one-way ticket on each route. Exhibit 2.1 shows the
regular prices. Following a well-established policy, JetGreen offers a discount to senior trave-
lers. The ticket price for a senior traveler is 90 percent of the regular price, rounded down to
the next smaller integer number of dollars. (For example, on the Houston-Phoenix route, the
senior ticket price is $112.) The marginal cost of flying a passenger on each route is virtually
zero.

Each of JetGreen’s three airplanes contains 260 seats. Exhibit 2.2 shows demand for the
routes in a bank at the regular price, and Exhibit 2.3 shows the demand from seniors (at the dis-
counted price). These figures apply to the times at which JetGreen flies, and they show that pas-
senger demand exceeds airplane capacity on every flight segment. For example, on the flight
from Miami to the Houston hub, the total regular demand is the sum of demands for three pas-
senger routes, (Miami to Houston or Chicago or Phoenix), totaling 72 + 105 + 68 ¼ 245 pas-
sengers (from the third row of Exhibit 2.2). For seniors, the comparable figure is 6 + 15 + 8 ¼
29, and the total is 245 + 29 ¼ 274. Because only 260 passengers can travel on the Miami–
Houston flight, at least 14 passengers represent lost demand.

When the total demand for a particular flight is larger than the available capacity, an airline
can decide whether to accept or reject an offer to buy a ticket for a particular route. Controlling

EXHIBIT 2.1 Price for Each Passenger Route

Destination

Houston Chicago Miami Phoenix

Origin

Houston – $197 $110 $125
Chicago $190 – $282 $195
Miami $108 $292 – $238
Phoenix $110 $192 $230 –

EXHIBIT 2.2 Regular Demand During One Bank

Destination

Houston Chicago Miami Phoenix

Origin

Houston – 123 80 110
Chicago 130 – 98 88
Miami 72 105 – 68
Phoenix 115 90 66 –
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sales in this way to maximize revenue is called revenue management. For example, JetGreen
may decide to sell large numbers of tickets for the Miami–Houston and Miami–Chicago
routes, but might severely restrict sales of the Miami–Phoenix tickets. Given the data above,
JetGreen might sell tickets to 78 Miami–Houston passengers, 120 Miami–Chicago passengers,
and only 62 Miami–Phoenix passengers, thus filling all 260 seats on the Miami–Houston flight.
All 14 lost demands would then come from the Miami–Phoenix route.

Assuming that the various demands in Exhibits 2.2 and 2.3 are known, JetGreen wants to
determine the number of tickets it should sell to regular and senior passengers on each route.

EXHIBIT 2.3 Senior Demand During One Bank

Destination

Houston Chicago Miami Phoenix

Origin

Houston – 12 7 10
Chicago 15 – 10 13
Miami 6 15 – 8
Phoenix 12 8 5 –
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Chapter 3

Linear Programming:
Network Models

In the previous chapter, we examined allocation, covering, and blending models—
three basic structures frequently encountered in linear programming applications. A
fourth common structure is the network model, and we devote a separate chapter
to it because of its distinctive nature. The network model describes configurations
of flow in a connected system, where the flow might involve material, people,
funds, and so on. These configurations are conveniently described with flow diagrams,
which help in the development of valid spreadsheet models. The possibility of doing
some of the model building with a diagram makes network models a special category
of linear programs.

The flow diagram is a modeling tool in its own right, and we can use it as a visual
aid or an auditing device. Used as a visual aid, the flow diagram is an accessory,
providing a picture of the problem structure to assist us in our main task, which is
developing the spreadsheet representation of the linear program. In this role, the
flow diagram is a preliminary step; it helps us build the spreadsheet model, and
once we’ve done that, we may no longer need the diagram. Alternatively, used as
an auditing device, the flow diagram allows us to translate a network picture directly
into an algebraic formulation and vice versa. This approach integrates the flow dia-
gram with the spreadsheet model. In this role, the diagram allows us to develop a
model on two fronts simultaneously, and we can use the diagram to check for
errors and omissions as we build the spreadsheet model.

In terms of the optimization software, no new features are needed to deal with
network models. Therefore, the software features covered in the previous chapter
are sufficient for this chapter as well.

We first study three types of special network problems that illustrate the use of
flow diagrams as visual aids. The distinguishing feature of special network models
is an inherent From/To flow pattern that lends itself to the row and column format
of the spreadsheet. We then move on to general network problems involving other
flow patterns, where we illustrate how to integrate the flow diagram with the develop-
ment of a spreadsheet. As we will see, the distinguishing feature of network models is

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
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a basic conservation law governing patterns of flow. This feature allows us to identify
the key constraints needed for the model. In the course of this chapter, we encounter
several applications of the conservation law, and we pay particular attention to the use
of flow diagrams in modeling.

3.1. THE TRANSPORTATION MODEL

A central feature of physical supply chains is the movement of product from one or
more source locations to a set of destinations where demand occurs. The cost of
moving units of product, together with the cost of making the product, accounts for
most of the cost of getting products to market. Small wonder, then, that a great deal
of attention is paid to controlling the costs that occur in supply chains. The building
block for performing this type of analysis is the transportation model. Consider the
example of Goodwin Manufacturing.

EXAMPLE 3.1 The Goodwin Manufacturing Company

The Goodwin Manufacturing Company is planning next week’s shipments from its three man-
ufacturing plants to its four distribution warehouses and is seeking a minimum-cost shipping
schedule. Each plant has a potential capacity, expressed in cartons of product, and each ware-
house has a demand requirement for the week that must be met. There are 12 possible shipment
routes, and for every plant–warehouse combination, the unit shipping cost is known. The
following table provides the given information.

(To) Warehouse

(From) plant Atlanta Boston Chicago Denver Capacity

Minneapolis $0.60 $0.56 $0.22 $0.40 10,000
Pittsburgh 0.36 0.30 0.28 0.58 15,000
Tucson 0.65 0.68 0.55 0.42 15,000

Requirement 8000 10,000 12,000 9000

B

Figure 3.1 displays a flow diagram showing the possible routes. In the diagram,
the letters on the left designate the manufacturing plants, which supply the product.
The letters on the right stand for the warehouses, where the demands occur. In this
case, all supply–demand pairs represent potential shipping routes.

Network terminology refers to flow along arcs or arrows in the diagram. Each arc
connects two nodes or circles, and the direction of the corresponding arrow indicates
the direction of flow. This flow incurs a cost: the unit cost of flow from any plant to any
warehouse is given in Example 3.1. The flows along each of the 12 possible routes
constitute the decision variables in the model. Although the diagram does not contain
labels for the arcs, it would be natural to use the notation MA for the quantity shipped
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on the route from Minneapolis to Atlanta, MB for the quantity shipped on the route
from Minneapolis to Boston, and so on.

This is an instance of the classical transportation problem, which is described by
a set of sources and their supplies, a set of destinations and their demands, and the unit
cost associated with each source–destination pair. In Example 3.1, the supplies are
plant capacities—figures that would be provided by the production or manufacturing
function. The demands are customer orders, typically marketing forecasts of near-term
requirements, although they could be firm orders in environments where delivery
lead times are relatively long. Unit costs are actual costs incurred internally, and
they would be estimated from historical data in logistics records. If some of the
potential routes had not been in use, the cost on those routes would have to be esti-
mated by knowledgeable people in the distribution or transportation functions.
Alternatively, the unit costs could arise as prices set by third parties who take res-
ponsibility for transportation of physical goods. In such cases, unit costs would be
based on published rates for delivery by truck, rail or air.

Figure 3.2 displays a spreadsheet model for the example. Notice the distinctive
From/To structure in the table describing the parameters of the problem. This structure
lends itself readily to a row-and-column format, which is the essence of spreadsheet
layout. Here, we adopt a convention that associates sources with rows and destina-
tions with columns. In other words, flow moves conceptually in the spreadsheet
from rows to columns. Because of this structure, it is helpful to depart from the stan-
dard linear programming layout used in Chapter 2 and to adopt a special format for
this type of model. In particular, we can construct a spreadsheet model in rows and
columns to mirror the table of parameters given in Example 3.1. In the Parameters

Figure 3.1. Flow diagram for Example 3.1.
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module of the spreadsheet, we see all of the given information, displayed in an array. In
the Decisions module, the decision variables (shaded for highlighting) appear in an
array of the same size. At the right of each row is the “Sent” quantity, which is
simply the sum of the flows along the row. Below each column of the array is the
“Received” quantity, which is the sum in the column. The objective function,
which is expressed as a SUMPRODUCT in cell C18, is the total transportation cost
for the system. It is the SUMPRODUCT of the two ranges, C5:F7 and C12:F14,
that hold the unit cost parameters and the shipment decisions. In algebraic form, the
objective function can be expressed as

Total cost ¼ z ¼ 0:60MAþ 0:56MBþ 0:22MC þ � � � þ 0:55TC þ 0:42TD

The transportation model has two kinds of constraints: LT supply constraints and
GT demand constraints. For the Minneapolis plant, the amount shipped from
Minneapolis must be no greater than the Minneapolis capacity. In symbols, we can
write the capacity constraint as

MAþMBþMC þMD � 10,000

For Pittsburgh and Tucson, we have similar constraints:

PAþ PBþ PC þ PD � 15,000

TAþ TBþ TC þ TD � 15,000

Given the spreadsheet layout, these three constraints constitute a set of LT constraints
that say Sent � Capacity, or G12:G14 must be less than or equal to G5:G7. The LHS

Figure 3.2. Spreadsheet model for Example 3.1.
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of these constraints simply adds the outbound shipment quantities from a given
location. For that reason, we don’t really need to use the SUMPRODUCT formula
in the worksheet; we can use the simpler SUM formula. Thus, as the display of for-
mulas in Figure 3.3 demonstrates, the spreadsheet model uses both the
SUMPRODUCT and SUM functions.

For the Atlanta warehouse, the demand constraint requires that the amount
received at Atlanta (from all sources) must be at least as large as the Atlanta
demand. As we saw in Chapter 2, it is good practice to use the inequality form of
this type of constraint, even though our intuition may tell us that there is no reason
to ship more to Atlanta than is demanded. In symbols, this constraint reads

MAþ PAþ TA � 8000

Similarly, for the other three warehouses, the constraints become

MBþ PBþ TB � 10,000

MC þ PC þ TC � 12,000

MDþ PDþ TD � 9000

In the spreadsheet, these four constraints constitute a set of GT constraints that say
Received � Demand, or C15:F15 must be greater than or equal to C8:F8. Again,
the left-hand sides of these constraints can easily be expressed using the SUM formula.
In the Model tab of the task pane, we specify the model as follows.

Objective: C18 (minimize)
Variables: C12:F14
Constraints: G12:G14 � G5:G7

C15:F15 � C8:F8

As usual for linear programs, we select the Standard LP/Quadratic Engine from
the drop-down menu on the Engine tab and set the Assume Non-Negative option to
True. This will be standard operating procedure when we are solving linear programs,
so we won’t mention it specifically from now on, unless there is an exception.

Figure 3.3. Formulas in the spreadsheet for Example 3.1.
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The optimal solution, shown in Figure 3.2, achieves the minimum cost of
$13,830. All demand constraints in this solution are binding, even though we per-
mitted the model to send more than the requirement to each warehouse. This result
makes intuitive sense because shipping more than is required to any warehouse
would merely incur excess cost. Once we understand why there is no incentive to
exceed demand, we can anticipate that there will be some excess capacity in the sol-
ution. This follows from the fact that total capacity comes to 40,000 cartons, while
total shipment volume comes to only 39,000, as confirmed in cell G15. In particular,
capacity constraints are binding at Pittsburgh and Minneapolis, but an excess capacity
of 1000 cartons remains at Tucson.

The solution, shown on the original network in Figure 3.4, may be surprising to
someone who has not previously seen the transportation model. Although there are 12
possible shipment routes in the model, the optimal solution uses only six. The flexibility
in having three possible sources for meeting each demand is not fully utilized. After
a little further thought, this pattern makes sense because many of the unused routes
are expensive. Nonetheless, the solution uses the TA route, on which the unit cost is
$0.65, and avoids the PC route, where the unit cost is $0.28. Such choices might be
unexpected, but they reflect the systems view that an optimization model can take.

As in other linear programming solutions, the transportation model provides both
tactical and strategic information. If Goodwin Manufacturing had to implement a
distribution plan immediately, then the plan shown in Figure 3.2 would be the cost-
minimizing plan that its management seeks, representing the tactical interpretation of
the model. However, if there is time to explore some changes in the given information,
as strategic initiatives, then to reduce total transportation cost, we should explore ways
of lowering one of the demand requirements or ways of adding capacity to Minneapolis

Figure 3.4. Optimal flows for Example 3.1.
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or Pittsburgh because these actions loosen the binding constraints. At the margin,
adding capacity at Tucson will not help in reducing total cost. Thus, by using linear
programming to solve its transportation problem, Goodwin Manufacturing can deter-
mine the cheapest way to meet customer demands in the short run. It can identify some
economically attractive strategic initiatives as well.

Example 3.1, which contains three sources and four destinations, shows how to
build a suitable spreadsheet for the transportation problem. It is straightforward to
adapt the spreadsheet design to any number of sources and any number of destinations.
Again, the key formulation step is to display cost parameters and shipment quantities
as separate arrays.

3.2. THE ASSIGNMENT MODEL

An important special case of the transportation problem has all capacities and all
requirements equal to one. Moreover, the number of sources and the number of
destinations are the same. This special case is known as the assignment problem.
The one-to-one matching structure of an assignment is a practical problem. In
addition, it arises as a portion of a more complicated model, as we shall see later.
For the most part, we can set up and solve this special case in the same way that we
dealt with the transportation problem. Consider the example of the Europa Auto
Company.

EXAMPLE 3.2 Europa Auto Company

Europa Auto Company is an automaker with six manufacturing plants and six vehicles to pro-
duce this year. The firm has learned that it makes sense to produce each vehicle at a unique plant,
even though some of the plants are older and less efficient than others. For each possible assign-
ment of a vehicle to a plant, the firm has estimated the annual cost (in millions of dollars) of
implementing the assignment. The cost data take the form shown in the following table,
which identifies the products by number. The automaker’s objective is to minimize the total
cost of the assignment.

Product

Compact Coupe Sedan SUV Truck Van
Plant 1 2 3 4 5 6

Akron 80 56 43 62 46 58
Buffalo 94 50 88 64 63 52
Columbus 94 46 50 40 55 73
Detroit 98 79 71 65 91 59
Evansville 61 59 89 98 45 52
Flint 77 49 65 95 72 91

B
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We can think of an assignment as a selection of six numbers from the cost table,
one from each row and one from each column. (Because the number of products is the
same as the number of plants, we can think of either assigning plants to products or
assigning products to plants.) The total cost associated with such an assignment is
the sum of the numbers selected. This is merely another way of saying that the problem
is a special transportation problem in which the row “capacities” are each one and the
column “requirements” are also one. As such, we can construct a flow diagram to
represent the decision problem in much the same way as in the transportation model
of Figure 3.1. The diagram for the automaker example is shown in Figure 3.5,
where each of the 36 arcs in the diagram represents part of a potential assignment.

To construct the assignment model algebraically, we define our decision variables
as the possible plant–product combinations, A1, A2, . . . , F6. Our objective function
(denoted z) is the total cost of an assignment, which can be expressed as the sum
of 36 products. Each term in this sum is an assignment cost multiplied by a decision
variable.

Total cost ¼ z ¼ 80A1þ 56A2þ 43A3þ � � � þ 72F5þ 91F6

There are 12 constraints, 6 for the plants and 6 for the products. The row (plant) con-
straints are as follows.

A1 þ A2 þ A3 þ A4 þ A5 þ A6 � 1
B1 þ B2 þ B3 þ B4 þ B5 þ B6 � 1
C1 þ C2 þ C3 þ C4 þ C5 þ C6 � 1

Figure 3.5. Flow diagram for Example 3.2.
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D1 þ D2 þ D3 þ D4 þ D5 þ D6 � 1
E1 þ E2 þ E3 þ E4 þ E5 þ E6 � 1
F1 þ F2 þ F3 þ F4 þ F5 þ F6 � 1

These constraints could also be written as equations. Meanwhile, the column (product)
constraints are as follows.

A1þ B1þ C1þ D1þ E1þ F1 � 1

A2þ B2þ C2þ D2þ E2þ F2 � 1

A3þ B3þ C3þ D3þ E3þ F3 � 1

A4þ B4þ C4þ D4þ E4þ F4 � 1

A5þ B5þ C5þ D5þ E5þ F5 � 1

A6þ B6þ C6þ D6þ E6þ F6 � 1

Again, these constraints could be written as equations without affecting the problem’s
solution.

Alternatively, for a more compact algebraic representation, we can use xij to rep-
resent the assignment decisions. Specifically, xij ¼ 1 if vehicle j is made at plant i.
In addition, we let cij denote the cost of assigning plant i to vehicle j. The index i
corresponds to a row number and the index j corresponds to a column number. Then,
we can express the objective function—the system-wide cost of the assignment—as
the following sum

z ¼
X

i

X

j

cijxij

The constraints become
X

j

xij � 1, for each plant i

X

i

xij � 1, for each vehicle j

Because the assignment model is a special case of the transportation model with total
capacity equal to total demand, we can be sure that the capacity and demand con-
straints will be binding. (This compact form of the problem statement will be useful
to us in later chapters.)

The assignment problem is to minimize z subject to the 12 constraints on the
variables. In neither of these formulations are there explicit considerations that would
help us avoid fractional values for the decision variables. Although our problem state-
ments allow the decision variables to be fractional, their optimal values will always be
either zero or one, as we shall discuss later.

Figure 3.6 shows a spreadsheet model for the assignment problem. It resembles
the spreadsheet for the transportation model introduced in Figure 3.2. The upper
table contains a 6 � 6 array of assignment costs. The decisions are shown in the
lower 6 � 6 table and highlighted. To the right of each row is the row sum and below
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each of the columns is the column sum. As in the transportation model (Figure 3.2),
these cells use the SUM formula. Finally, in cell B24, we highlight the value of the
objective function, or total cost, which is computed as the SUMPRODUCT of the
cost array and the decision array.

Conceptually, there are capacities of one for each plant and requirements of one
for each product, in analogy to the transportation model. Rather than include these
parameters on the spreadsheet itself, they are entered as RHS constants in the con-
straints. Normally, it is not good practice to enter RHS constants in the task pane,
because we prefer to show parameters of the model on the spreadsheet itself, where
we might want to explore some what-if questions. However, we make an exception
here because the right-hand sides will not change: values of one represent the essence
of the assignment problem. The specification of the model is as follows.

Figure 3.6. Spreadsheet model for Example 3.2.
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Objective: B24 (minimize)
Variables: C15:H20
Constraints: I15:I20 � 1

C21:H21 � 1

The LT constraints assure that at most one product is assigned to each plant, and the
GT constraints assure that each plant has at least one product assigned to it. (As
mentioned earlier, we could also express all of the constraints as equations.)

Figure 3.6 displays the optimal solution, which achieves a minimum total cost of
$314 million. This optimum is achieved by assigning the Sedan to Plant A, the Coupe
to B, the SUV to C, the Van to D, the Truck to E, and the Compact to F. By solving this
linear programming problem, Europa can find an economic assignment of vehicle
models to plants, thus potentially saving millions of dollars over ad hoc assignment
methods.

The assignment problem often arises when people must be assigned to tasks. The
model assumes that quantitative scores apply to each person–task combination and
the objective is to find a minimum (or maximum) total score. One classic application
is the assignment of four swimmers to laps in a medley relay, where each lap corresponds
to a different stroke, and each swimmer has a lap time for each stroke. The assignment
model has also been used to assign workers to shifts, courses to time slots, airline crews
to flights, and purchase contracts to supplier bids. For our purposes in modeling, the
assignment problem is simply a practical special case of the transportation problem.

3.3. THE TRANSSHIPMENT MODEL

The assignment problem turned out to be a simplified version of the transportation pro-
blem, specialized to unit demands and unit supplies. By contrast, the transshipment
problem is a complicated version of the transportation problem, containing two
stages of flow instead of just one. In Figure 3.1—our diagram for the transportation
problem—the system contains two levels (plants and warehouses), and all the flow
takes place in one stage, from plants to warehouses. In many logistics systems, how-
ever, there are three major levels: plants, distribution centers (DCs), and warehouses;
in such systems, the flow often takes place in two stages. Consider the example of
DeMont Chemical Company.

EXAMPLE 3.3 DeMont Chemical Company

DeMont Chemical Company manufactures fertilizer in three plants, referred to as P1, P2, and
P3. The company ships its products from plants to two central DCs, designated D1 and D2,
and then from the DCs to five regional warehouses, W1–W5. At the DCs, no demand occurs
and no capacity limits exist. Demand is associated with the warehouses, and capacities exist at
the plants. The system is described in the following two tables, one for each stage. The units
for capacity and demand are pounds of fertilizer, and the unit costs are given per pound.
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(To) DC

(From) plant D1 D2 Capacity

P1 $1.36 $1.28 2400
P2 1.28 1.35 2750
P3 1.68 1.55 2500

(To) warehouse

(From) DC W1 W2 W3 W4 W5

D1 $0.60 $0.36 $0.32 $0.44 $0.72
D2 $0.80 $0.56 $0.42 $0.40 $0.55

Requirement 1250 1000 1600 1750 1500

B

Figure 3.7 provides a flow diagram for the system, showing the plants on the left-
hand side of the diagram, the warehouses on the right, and the DCs in the center. We
can think of this system as composed of two side-by-side transportation problems, one
involving the plants and DCs and the other involving the DCs and warehouses. All
material flow occurs in two stages; that is, material flows first from a plant to a DC
and then from a DC to a warehouse. The DCs are called transshipment points, referring
to the fact that material arrives at those locations and is then subject to further ship-
ment. The essence of the transshipment structure is the coordination of the two trans-
portation stages.

Figure 3.7. Flow diagram for Example 3.3.
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The flow diagram reinforces the fact that the problem involves two side-by-side
transportation problems, and we could build a spreadsheet layout showing two
stages horizontally on a worksheet, each resembling Figure 3.2 for the transportation
model. However, a vertical layout is shown in the worksheet of Figure 3.8. In this
layout, the upper portion of the worksheet corresponds to the first stage of plant–
DC flow, with costs in the left-hand array and decisions (highlighted) in the right-
hand array. Plant capacities appear, just as in the transportation problem, in this portion
of the model. Although no requirements appear, Cell F9 contains a SUMPRODUCT
formula that accounts for the total transportation cost in the first stage. The lower
portion of the sheet corresponds to the second stage of DC–warehouse flow, again
with costs in the left-hand array and decisions (highlighted) in the right-hand array.
Requirements appear in this segment of the model, and another SUMPRODUCT
formula accounts for the total cost of the second stage in cell F18. The total cost
for the entire system is the sum of the first stage cost and the second stage cost, as
captured in cell C20.

In the upper portion of the model, the sources are represented in rows and the des-
tinations are represented in columns. In the lower portion, this convention is reversed:
the sources are represented in columns, and the destinations are represented in rows.
Under this “flip flopping” convention, the same columns (in this worksheet, columns
C and D for costs, or columns G and H for decisions) correspond to the DCs in both
portions of the model. The identification of DCs with unique columns helps to
reinforce the need for coordinating the flows in to and out of the DCs. This structure
also makes it relatively easy to accommodate an additional DC in the model (by
inserting a column in the spreadsheet).

Figure 3.8. Spreadsheet model for Example 3.3.
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The model specification is as follows

Objective: C20 (minimize)
Variables: G6:H8, G13:H17
Constraints: I6:I8 � E6:E8

I13:I17 � E13:E17
G9:H9 ¼ G12:H12

The formulation contains three LT constraints (one per plant), five GT constraints (one
per warehouse), and two EQ constraints (one per DC). The optimal solution in this
example is shown in Figure 3.8 with a total cost of $12,849.50. Thus, DeMont
Chemical can take a systems view—and recognize both stages of its supply chain—
when it optimizes its distribution costs.

To repeat, the total cost in cell C20 is the sum of the first-stage total cost and the
second-stage total cost, and the decision variables appear in two arrays. Three types of
constraints are needed in the model: a set of LT constraints for the plant capacities, a
set of GT constraints for the warehouse requirements, and a set of EQ constraints bal-
ancing the inflows and outflows at the DC locations. Although this last set of con-
straints could also be expressed in the form of inequalities, the use of equations
helps to identify the various constraints by associating a different constraint type
(LT, GT, EQ) with each of the three different roles (capacities at the plants, require-
ments at the warehouses, and transshipment at the DCs). We can also view the EQ con-
straints as expressing the key conservation law of flows in networks: the total quantity
flowing out of a node must always be equal to the total quantity flowing in.

To describe the conservation law algebraically, we introduce some notation for
the decision variables. Let P2D1 represent the quantity shipped from plant P2 to
distribution center D1, and so on. With this notation, we can write the conservation
relationship for D1 as follows

ðFlow OutÞ ¼ ðFlow InÞ

ðFlow OutÞ � ðFlow InÞ ¼ 0

ðD1W1þ D1W2þ D1W3þ D1W4þ D1W5Þ � ðP1D1þ P2D1þ P3D1Þ ¼ 0

Similarly, for D2, we have

(D2W1þ D2W2þ D2W3þ D2W4þ D2W5)� (P1D2þ P2D2þ P3D2) ¼ 0

Thus, the conservation law takes the form of an equality constraint for particular nodes
in the network. This equality constraint is sometimes called a balance equation,
because it ensures perfect balance between inputs and outputs.

In this approach, we employed the conservation law to help build constraints for
the DCs. We did not use the conservation law for the supply and demand nodes. At
first glance, it may appear that the conservation law does not necessarily hold at
those nodes. For example, if we interpret the input to node P1 as its capacity, we
cannot be sure, before solving the optimization problem, whether all of that capacity
will be used. Thus, we can’t tell whether the total flow out of the node will be equal to
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the flow in to the node. A similar fact applies to the demand nodes, although as we
noted earlier, we can expect the total flow into those nodes to equal the demands
when there is an adequate supply in the network as a whole and when minimum
cost is the objective. In other words, there is no economic incentive to violate the con-
servation law at the demand nodes, even though the constraints of the model might
permit it. Nevertheless, there is a sense in which the conservation law holds even
for the supply and demand nodes. We explore this interpretation in a later section.

3.4. FEATURES OF SPECIAL NETWORK MODELS

The transportation, assignment, and transshipment problems constitute a set of special
network models in linear programming. They are special in the sense that they all lend
themselves easily to the use of a flow diagram, and they all contain a From/To flow
structure that suggests a convenient row-and-column layout in a spreadsheet. In par-
ticular, we can conveniently display the decision variables as an array in the spread-
sheet. When we specify the variables for Solver, we do not enter a row of adjacent
cells, which is the standard format. Instead, we enter an array, or in the case of the
transshipment model, a pair of arrays. (This feature could obviously be generalized
to cases in which we have three or more stages in the model.) With the array format
at the heart of the model, the constraints involve limitations on totals across a row
or down a column. As a result, the constraints use the SUM formula, rather than the

BOX 3.1 Characteristics of Special Network Models

Modules

Data module: capacities, demands, and unit costs.

Decision module: variables, row sums, and column sums.

Objective function: total cost of distribution, transportation, or assignment.

Decision variables

Use array layout reflecting the problem’s From/To structure.

Use an array the same size as the corresponding unit cost array.

Objective function

Calculate as the SUMPRODUCT(s) of array pairs.

Minimize total distribution, transportation, or assignment cost.

Constraints

Sum decision variables along row or column to compute capacity allocated.

Sum decision variables along row or column to compute demand covered.

Use LT for capacity, GT for demands to express the most flexible form.
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SUMPRODUCT formula that we saw throughout Chapter 2. Box 3.1 summarizes the
prominent features of special networks.

One interesting feature of special network models is that an optimal solution
always consists of an integer-valued set of decision variables whenever the constraint
parameters are integer valued. Recall that the linearity assumption in linear program-
ming allows for divisibility in the values of decision variables. As a result, some or all
of the decision variables in an optimal solution may be fractional, and this sometimes
makes the result difficult to implement or interpret. However, no such problem arises
with special networks; they will always lead to integer-valued solutions as long as the
constraint parameters are integers themselves.

Finally, the models of transportation, assignment, and transshipment problems
introduced thus far have featured LT constraints for capacities and GT constraints
for requirements, along with balance equations in the case of a transshipment
model. In the case of the assignment model, its special structure allowed us to use
equality constraints from the outset. However, as we shall discover next, it is possible
to formulate any of these problems as linear programs built exclusively on balance
equations. Although this approach may not seem as intuitive, it does link the flow dia-
gram and the spreadsheet model more closely, as suggested at the beginning of the
chapter.

3.5. BUILDING NETWORK MODELS WITH
BALANCE EQUATIONS

The transportation model is a special kind of network. As we can readily see in the
diagram of Figure 3.1, the nodes can be partitioned into a set of supply locations
and a set of demand locations. This partitioning allows us to build a From/To structure
suited to the row-and-column format of the spreadsheet. However, we sometimes
encounter other network structures that do not lend themselves quite as easily to
an array layout for decision variables. For these networks, it may be desirable to for-
mulate the model using the standard linear programming format, with decision
variables in a single row and with a SUMPRODUCT function in each of the con-
straints. In what follows, we provide a glimpse of how to approach network models
in such a manner. The distinguishing feature of this approach is the use of balance
equations, relying heavily on the information in a flow diagram. To illustrate how
this approach works, we return to examples we have already covered. As suggested
earlier, the balance equation approach is not the most intuitive way to handle transpor-
tation, assignment, and transshipment problems, but it will be useful background when
we analyze other network models. By revisiting the transportation, assignment, and
transshipment examples (Examples 3.1–3.3) we can explore a new approach while
drawing on familiar problems.

The arcs of a network represent possible flow paths, and the quantities flowing
along each arc correspond to decision variables in the model. For diagramming pur-
poses, we also represent supply capacities and demand requirements as entering and
leaving arcs, respectively, just as in Figure 3.1 or 3.5. Now we take one additional
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step: we make sure that—for the entire network—the total supply quantity matches
the total demand quantity. This feature allows us to write a balance equation for
each node in the network.

Balanced totals for supply and demand occur in the assignment example of
Figure 3.5. Since the problem comes to us with that feature, we can move from the
diagram directly to the balance equations. For node A, the balance equation takes
the following form

ðFlow OutÞ � ðFlow InÞ ¼ 0

ðA1þ A2þ A3þ A4þ A5þ A6Þ � 1 ¼ 0

Similarly, there are 11 other balance equations. The full spreadsheet model, with 36
variables and 12 constraints, is shown in Figure 3.9. The optimal solution produced
by Solver achieves the minimum cost of $314 million, which we recognize from
Figure 3.6. The set of assignments matches the optimal solution in the earlier formu-
lation as well.

It is not hard to imagine a problem in which total supply and demand are unequal.
In fact, our transportation example in Figure 3.1 is just such a case. In this example,
total supply is 40,000, while total demand is 39,000. Thus, we might wonder
how to deal with problems that come to us with unbalanced totals for supply and
demand. Here is how we proceed. We alter the diagram by adding a “dummy” ware-
house to capture excess capacity. In our example, the requirement at this fictitious
warehouse is 1000, bringing demand and capacity into balance. We then add arcs link-
ing each of the plants to the dummy warehouse, and we assign zero costs to these arcs.

We can think of shipments to the dummy warehouse as shipments to Nowhere.
In other words, flows into the dummy warehouse are virtual flows that do not actually
occur, whereas flows into the first four warehouses correspond to physical flows.
The virtual flows correspond to unused capacity, which justifies using a cost of
zero on these arcs. The complete diagram is shown in Figure 3.10. We see that the
original diagram has been augmented so that there are now three capacities and five

Figure 3.9. Standard linear programming format for Example 3.2.
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requirements, giving rise to eight nodes; and there are 15 routes, corresponding to
15 arcs. However, the net effect has been to recast the original network into an equiv-
alent one containing equal supply and demand quantities. This means that all of the
supply available at the plants must ultimately find its way through the network to
the warehouses. As a result, there must be a balance equation for every node.

The next step is to translate the diagram into a linear programming model. We
again set aside one variable for each arc; thus, we reserve 15 columns for decision vari-
ables. There are also eight constraints, one corresponding to each node. The essential
requirement for any node in the model is a balance equation, that is, an EQ constraint
ensuring that total flow into the node matches total flow out of the node, or

(Flow Out)� (Flow In) ¼ 0

For example, at the Minneapolis node, the flow in corresponds to the capacity of
10,000, while the flows out correspond to the arcs (decision variables) MA, MB,
MC, MD, and MN. The balance equation becomes

MAþMBþMC þMDþMN � 10,000 ¼ 0

or, in standard form, with variables on the left-hand side and constants on the right,

MAþMBþMC þMDþMN ¼ 10,000:

Figure 3.10. Flow diagram for the augmented version of Example 3.1.
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For the other two plants, we obtain

PAþ PBþ PC þ PDþ PN ¼ 15,000

TAþ TBþ TC þ TDþ TN ¼ 15,000

For the Atlanta node, the flow in corresponds to the arcs MA, PA, and TA, while
the flow out corresponds to the requirement of 8000. The balance equation becomes

8000�MA� PA� TA ¼ 0

which we choose to write as

�MA� PA� TA ¼ �8000

For the other destination nodes, we obtain

�MB� PB� TB ¼ �10,000

�MC � PC � TC ¼ �12,000

�MD� PD� TD ¼ �9000

�MN � PN � TN ¼ �1000

Figure 3.11 shows the complete spreadsheet model, in which all constraints are EQ
constraints, and the objective function is unchanged from before. Moreover, we can
distinguish flows into the network as positive right-hand sides (in the first three con-
straints) from flows out of the network, which are negative right-hand sides (in the last
five constraints). The model specification is as follows.

Objective: Q8 (minimize)
Variables: B6:P6
Constraints: Q11:Q18 ¼ S11:S18

Figure 3.11. Spreadsheet model for the augmented version of Example 3.1.
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When we solve this optimization problem in the usual way, we obtain the same
minimum cost we saw previously, $13,830, as shown in Figure 3.11. In this case,
the decision variables also match those of Figure 3.2. The optimal solution also
contains the decision variable TN ¼ 1000, which we interpret as excess capacity of
1000 units at Tucson.

To summarize, we have followed a procedure for translating a network problem
into a linear program. This procedure requires a flow diagram, possibly including
a dummy node to capture unused capacity. Once we construct such a diagram, we
can build the model by following these simple steps.

† Define a variable for each arc.

† Define a constraint for each node.

† Express the balance equation for each node.

In addition, a sign convention for right-hand side constants can provide improved
clarity. Under this convention, a balance equation has a positive right-hand side to
signal flow into the network and a negative right-hand side to signal flow out of the
network.

For distribution problems of this sort, the From/To structure of the situation
lends itself most readily to the special network layout shown in Figure 3.2, and that
would be the modeling approach of choice. The approach suggested here is more
general and would be valuable in situations that are more complicated than transpor-
tation, assignment, or transshipment problems. We examine some examples in the
next section. Before we proceed, however, here is a perspective on the balance
equation model.

The special network models all adhere to the conservation law and the use of
balance equations, although it may be necessary to add a dummy node to make
sure that all supply capacity is consumed. In the models we built at the outset, the
addition of a dummy node and corresponding dummy arcs would have seemed
unwieldy or unnecessary. Fortunately, we were able to avoid that step and proceed
directly to a convenient formulation that contains inequalities rather than equations.
In effect, we were dropping the dummy nodes and arcs from the network. By ignoring
those virtual flows, we could change the balance equation for each supply node to a LT
inequality. Similarly, we could also change the balance equation for each demand
node to a GT inequality, incorporating the additional flexibility suggested in
Chapter 2. These simplification steps left us with the network model we saw in
Figure 3.2, but with our new perspective, we can interpret it as an adaptation of the
balance equation model.

Special purpose solvers have been developed for use on large-scale network
problems in industry and academia. Typically, these solvers rely on balance equations
and therefore require that formulations contain equality constraints. However,
RSP does not presently have the facility to draw on these kinds of solvers. The
use of balance equations with Solver may help avoid formulation errors, but
it cannot exploit the algorithmic efficiencies that specialized network software
packages offer.

90 Chapter 3 Linear Programming: Network Models



3.6. GENERAL NETWORK MODELS WITH YIELDS

In network diagrams for the transportation, assignment, and transshipment models,
arcs carry flow from one node to another. Moreover, on every arc, the flow into the
destination node is implicitly required to exactly match the flow sent out from
the source node. However, we can relax that kind of conservation requirement
and extend network models to cases in which flows are subject to yield factors. The
yield factors may shrink the amount flowing on an arc, in which cases we speak of
a yield loss. Alternatively, yield factors may enhance the amount flowing, in which
case we speak of a yield gain. The next two subsections provide examples.

3.6.1. Models with Yield Losses
Yield loss occurs in manufacturing processes where materials are shaped and trimmed
to fit a target design, thus creating material waste. In other settings, quality inspections
screen out defective parts. Process yields of these types reduce the amount of material
in the main product. Similarly, yield loss may occur in distribution processes,
especially with perishable goods. Fluids may partially evaporate during a delivery
trip, or vegetables may spoil. The net effect of perishability, as with process yields,
is simply a reduction in the amount of a flow that reaches its destination.

EXAMPLE 3.4 The Goodwin Manufacturing Company Revisited

The Goodwin Manufacturing Company (of Example 3.1) finds that its product is subject
to evaporation in the tanker trucks used for distribution purposes. The average amount of evap-
oration depends the distance traveled and the average temperature. The following table shows
the corresponding yield loss as it has been observed to occur on each of its shipping routes.

(To) warehouse

(From) plant Atlanta Boston Chicago Denver

Minneapolis 0.24 0.19 0.07 0.11
Pittsburgh 0.10 0.05 0.04 0.15
Tucson 0.26 0.41 0.32 0.27

B

In this scenario, the yield factor tells us what proportion of the material sent along
an arc will reach its destination. For the purposes of decision making, we can still
measure the amounts sent out along each arc, but we have to adjust those figures to
determine how much demand is actually met at each destination. In addition, we
cannot know in advance how much material in the aggregate we will ship from the
three plants. We know that, after yield losses, we must ship more than the total
demand quantity (still 39,000), but we can’t tell how much more because we don’t
yet know which shipping routes we’ll use. Therefore, if we think of our model
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containing a demand node for Nowhere, we must now treat the demand at that node as
a variable.

For the purposes of illustration, we assume that each plant has a standard capacity
of 16,000 units. Our supply constraints resemble those of the balance-equation model
of the previous section.

MA þ MB þ MC þ MD þ MN ¼ 10,000
PA þ PB þ PC þ PD þ PN ¼ 15,000
TA þ TB þ TC þ TD þ TN ¼ 15,000

For the Atlanta node, the flow in corresponds to the net amounts on arcs MA, PA, and
TA, while the flow out corresponds to the requirement of 8000. The balance equation
becomes

8000�0:76MA�0:90PA�0:74TA¼ 0

which we choose to write as

�0:76MA�0:90PA�0:74TA¼�8000

For the other destination nodes, we obtain

�0:81MB� 0:95PB� 0:31TB ¼ �10,000

�0:93MC � 0:96PC � 0:68TC ¼ �12,000

�0:89MD� 0:85PD� 0:73TD ¼ �9000

�MN � PN � TN � NX ¼ 0

In this last constraint, NX measures the total quantity unshipped and does not appear in
the objective function. The objective function is the same as the one we used initially.

Figure 3.12 shows the complete spreadsheet model, in which all constraints are
EQ constraints, as in the previous section. In particular, the coefficients in rows
16–20 are yield factors, and these values are taken from the parameters in row 10.
The model specification is as follows.

Objective: R8 (minimize)
Variables: B6:Q6
Constraints: R13:R20 ¼ T13:T20

When we solve this optimization problem in the usual way, we obtain the mini-
mum cost of $15,498, as shown in Figure 3.12. To achieve this cost, the shipments out
of Minneapolis and Pittsburgh exhaust capacity, whereas some excess capacity
remains at Tucson. (The solution reflects this pattern because variables MN and PN
are zero, but TN is positive.) From the model, we can determine that the total quantity
shipped is 44,707, which provides the 39,000 units of demand after accounting
for yields.

With yields present in the model, the structure is not as simple as the transpor-
tation model, but we can exploit the conservation law to help us develop valid
constraints from balance equations.
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3.6.2. Models with Yield Gains
We look next at flows that expand. Although there are chemicals that exhibit this prop-
erty, a more familiar application involves money. As money flows through different
locations in time, it usually expands. This expansion results from drawing interest
or other kinds of investment returns. Consider the familiar problem of investing for
college expenses.

EXAMPLE 3.5 Planning for College

Two parents want to provide for their daughter’s college education with some money they
have recently inherited. They would like to set aside part of the inheritance in an account that
would cover the needs of their daughter’s college education, which begins four years from
now. They estimate that first-year college expenses will come to $24,000 and increase $2000
per year during each of the remaining three years of college. The following investments are
available.

Investment Available Matures
Return at
maturity

A Every year 1 year 6%
B 1, 3, 5, 7 2 years 14%
C 1, 4 3 years 18%
D 1 7 years 65%

The parents would like to determine an investment plan that provides the necessary funds to
cover college expenses with the smallest initial investment. B

Figure 3.12. Spreadsheet model for Example 3.4.
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Investment and funds-flow problems of this sort lend themselves to network mod-
eling. In this type of problem, nodes represent points in time at which funds flow could
occur. We can imagine tracking the balance in a bank account, with funds flowing in
and out depending on our decisions. In Example 3.5, we include a node for now (time
zero), and nodes for the end of years 1 through 7. Tracking time for this purpose, the
end of year 3 and the start of year 4 are in effect the same point in time. To construct a
typical start-of-year node, we first list the potential inflows and outflows that can occur.

Inflows

Initial investment

Appreciation of investment A from 1 year ago

Appreciation of investment B from 2 years ago

Appreciation of investment C from 3 years ago

Appreciation of investment D from 7 years ago

Outflows

Expense payment for the coming year

Investment in A for the coming year

Investment in B for the coming 2 years

Investment in C for the coming 3 years

Investment in D for the coming 7 years

Not all of these inflows and outflows apply at every point in time, but if we sketch
the eight nodes and the flows that do apply, we come up with a diagram such as the

Figure 3.13. Flow diagrams for Example 3.5.
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one shown as Figure 3.13. In this diagram, A1 represents the amount allocated to
Investment A at time zero, A2 represents the amount allocated to Investment A at
the start of year 2, and so on. The initial investment in the account is shown as I0,
and the expense payments are labeled with their numerical values. The diagram
shows the different nodes as independent elements, which is all we really need; how-
ever, Figure 3.14 shows a tidier diagram in which the nodes are connected in a single
flow network.

We do not need the variable B7 in the model. A 2-year investment starting in
year 7 would extend beyond the 8-year horizon, so this option is omitted. However,
the variable A8 does appear in the model. We can think of A8 as representing the
final value in the account. Perhaps it is intuitive that, if we are trying to minimize
the initial investment, there is no reason to have money in the account in the end.
Still, to verify this intuition, we can include A8 in the model, anticipating that we
will find A8 ¼ 0 in the optimal solution.

The next step is to convert the diagram into a linear programming model. For this
purpose, the flows on the diagram become decision variables. Then, each node gives
rise to a balance equation, as listed below.

A1þ B1þ C1þ D1� I0 ¼ 0 ðEnd of year 0Þ

A2� 1:06A1 ¼ 0 ðEnd of year 1Þ

A3þ B3� 1:06A2� 1:14B1 ¼ 0 ðEnd of year 2Þ

A4þ C4� 1:06A3� 1:18C1 ¼ 0 ðEnd of year 3Þ

A5þ B5þ 24,000� 1:06A4� 1:14B3 ¼ 0 ðEnd of year 4Þ

A6þ 26,000� 1:06A5 ¼ 0 ðEnd of year 5Þ

A7þ 28,000� 1:06A6� 1:14B5� 1:18C4 ¼ 0 ðEnd of year 6Þ

A8þ 30,000� 1:06A7� 1:65D1 ¼ 0 ðEnd of year 7Þ

Figure 3.15 shows these EQ constraints as part of the spreadsheet model. A
systematic pattern is formed by the coefficients in the columns of the constraint
equations. Each column has two nonzero coefficients: a positive coefficient (of 1),
corresponding to the time the investment is made, and a negative coefficient (reflecting

Figure 3.14. Unified flow diagram for Example 3.5.
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the appreciation rate), corresponding to the time the investment matures. The only
exceptions are I0 and A8, which essentially represent flows into and out of the network.
In other funds-flow models, the column coefficients portray the investment-and-return
profile on a per-unit basis for each of the variables. Following our sign convention, the
right-hand-side constants show the profile of flows in and out of the system over the
various time periods. In this case, the constants in the last four constraints are negative,
reflecting required outflows from the investment account in the last four years of
the plan.

The objective function in this example is simply the initial size of the investment
account, represented by the variable I0, which we want to minimize. Thus, we can
depart from the standard form (which uses the SUMPRODUCT function as an objec-
tive) and designate the objective function simply by referencing cell B5. The model
specification is as follows.

Objective: B8 (minimize)
Variables: B5:P5
Constraints: Q10:Q17 ¼ S10:S17

When we minimize I0, Solver provides the optimal solution shown in Figure 3.15,
calling for an initial investment of about $74,422. Compare this with the nominal
value of the college expenses, which sum to $108,000. The lower figure for the initial
investment testifies to the power of compound interest. In our example, the parents can
use linear programming to take advantage of interest rate patterns and minimize the
investment they need to make in order to cover the prospective costs of their daughter’s
college education.

The nature of the optimal solution may not be too surprising. First, the return of 18
percent on the three-year investment is dominated by the return of 6 percent on the
one-year investment A, due to compounding. Thus, we should not expect to see any
use of the three-year instruments in the optimal solution. The return on the one-year
investment is dominated, in turn, by the return on the two-year investment and the

Figure 3.15. Spreadsheet model for Example 3.5.
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return on the seven-year investment. Thus, we should expect to see substantial use of
those two instruments. The use of the one-year investment is dictated by timing:
Because it is the only investment maturing at the end of year 5, it becomes the vehicle
to meet the $26,000 requirement. Prior to that, the solution uses B3 (funded in turn by
B1) to cover the first year of expenses and to fund A5. Then B5 covers the third year of
expenses, funded by B3. Finally, D1 covers the fourth year of expenses. As expected,
the account should be empty at the end of the planning horizon.

The network diagram provides another perspective on this solution structure. In
Figure 3.16, we show the network diagram with only the positive flows displayed.
The diagram shows clearly that the only vehicle in the optimal solution for meeting

Figure 3.16. Flow diagram with optimal flows for Example 3.5.

BOX 3.2
Characteristics of General Network Models for
Funds Flow

Decision variables

Arcs correspond to sources and uses of funds.

Make investments; pay off debts owed.

Objective function

Reference a single variable.

Minimize initial investment or maximize final value.

Constraints

Nodes correspond to points in time.

A balance equation corresponds to each node.

For investments, the column depicts the pattern of principal and returns.

For loans, the column depicts the pattern of principal and interest payments.

RHS constants describe external flows to and from the network.

Add lower-bound or upper-bound constraints as needed.
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the $30,000 requirement at node 7 is the investment in D1. Therefore, the size of the
initial investment in D1 must be 30,000/1.65 ¼ 18,182. Working backwards, we can
also see that the size of B5 is dictated by the $28,000 requirement, and A5 is dictated by
the $26,000 requirement. Once A5 and B5 are determined, they, together with the
$24,000 requirement, dictate the size of B3. In turn, B3 dictates the size of B1. The
diagram systematically conveys the detailed pattern in the optimal solution.

Box 3.2 summarizes the important features of network models for funds flow pro-
blems. In a multiperiod investment model, flows expand as they travel along arcs.
Matter is not conserved as it flows, so we lose the conservation of matter that holds
implicitly for flows between nodes in special networks. However, balance equations
still apply at each node, in the sense that the total flow out of a node always equals
the total flow in. The flows are still denominated in currency wherever they appear
in the network. (Money is not converted into product, for example.) By contrast, we
look next at a class of network models in which the flows are transformed.

3.7. GENERAL NETWORK MODELS WITH
TRANSFORMED FLOWS

Another phenomenon that lends itself to network descriptions is the output of pro-
duction processes. In this application, a node in the flow diagram represents a process
that transforms inputs into outputs. In a transportation network, a node might represent
a facility where material is received and ultimately sent out; however, the form of the
input flow and the form of the output flow always match. That is, if the input is
measured in truckloads, then so is the output. If the input is measured in cartons,
then so is the output. The concept holds as well for nodes in a funds-flow network:
if the input is measured in dollars, then so is the output. By contrast, production pro-
cesses alter the material flowing in the system, so outputs may constitute different
types of material than the inputs from which they were created. Even with this gener-
alization, network concepts are still applicable. Consider the example of oil refining at
Delta Oil Company.

EXAMPLE 3.6 Delta Oil Company

A simplified representation of the refining process at Delta Oil Company appears in Figure 3.17.
First, the distillation process separates gasoline from other components by heating crude oil
under pressure in a distillation tower. The vapors are then collected separately and cooled to pro-
duce distillate and other “low-end” by-products. The distillation tower uses five barrels of crude
oil to produce three barrels of distillate and two barrels of by-products. Some distillate is blended
into gasoline; the rest becomes feedstock for the catalytic cracker.

The catalytic cracking process utilizes high temperatures to break heavy hydrocarbon com-
pounds into lighter compounds. This process produces high quality catalytic gasoline (or cata-
lytic, for short) and other “high-end” by-products. Delta’s catalytic cracker requires 2.5 barrels
of distillate to produce 1.6 barrels of catalytic and 1 barrel of by-products. (The cracking process
creates output volume that exceeds input volume.)
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Finally, distillate from the distillation tower is blended with catalytic to make regular gaso-
line and premium gasoline. Premium grade gasoline requires a higher proportion of catalytic in
the blend as compared to regular grade gasoline. B

We adapt the sketch of production flows and convert it to a standard network flow
diagram by labeling each of the arcs in the network, recognizing that these labels will
also serve as the names of decision variables in the linear programming model. For
convenience, we use some abbreviations, such as CR, which represents the amount
of catalytic that is combined into regular gasoline. Next, we create node T to represent
the tower and node C to represent the cracker. We also add nodes 1, 2, and 3 to rep-
resent allocations of flow. At node 1, the distillate must be split into a portion that is
directly blended into gasoline and a portion that is used as a feedstock for the cracker.
At node 2, the distillate allocated to blending must be split between regular and pre-
mium grades of gasoline, and similarly at node 3 for the catalytic produced by the
cracker. Finally, nodes 4 and 5 represent the output of the two blending decisions,
one for regular and one for premium.

For each node in the diagram, we write a balance equation. Conceptually,
however, there is a twist here. Because the nodes represent transformation processes,
the input material may differ from the output material, and there may be several
input materials and output materials. (In distribution models and yield models,
no transformation of material takes place.) We write a balance equation for each
output material. For example, the equations for the tower node (T) take the follow-
ing form.

Flows Out� Flows In ¼ 0

Dist � 0:60 Crude ¼ 0

Low� 0:40 Crude ¼ 0

Figure 3.17. Flow diagram for Example 3.6.
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Thus, this node generates two balance equations, one each for distillate and low-end
by-products. Each equation contains one input term, for crude. The coefficients of
0.60 and 0.40 correspond to a fractional split of five barrels into flows of three
barrels and two barrels, respectively, for the split between distillate (Dist) and low-
end by-products (Low).

A similar pair of equations applies to the cracker node (C)

Flows Out� Flows In ¼ 0

Cat � 0:64 Feed ¼ 0

High� 0:40 Feed ¼ 0

The numbered nodes are similar to transshipment nodes in our distribution
models, because the inputs and outputs are the same material. At node 1, the distillate
must be split into either feedstock (Feed) or gasoline blending input (Blend). The
balance equation becomes

Feed þ Blend � Dist ¼ 0

Nodes 2 and 3 have a similar structure

BPþ BR� Blend ¼ 0

CPþ CR� Cat ¼ 0

Nodes 4 and 5 are also of this type

BPþ CP� Prem ¼ 0

BRþ CR� Reg ¼ 0

The balance equations represent an algebraic description of the flow diagram.
Conversely, the flow diagram represents a network representation of the balance
equations. The system of balance equations and the network flow diagram are different
manifestations of the same model. We can use one form to audit the other in order to
check for consistency and eliminate structural errors.

The linear programming model has not been finished. In addition to the network
“kernel” for this problem, other types of information are needed, including:

† production capacities for each production process,

† sales potentials for final products,

† blending specifications for gasoline.

The first two of these can be stated in appropriate dimensions, such as barrels per day,
whereas the third describes limits on the ratio in which gasoline inputs may be mixed.
To illustrate the entire model, suppose the following parametric assumptions apply.

† Tower and cracker capacities: 50,000 and 20,000 barrels/day.

† Sales potential for regular and premium gasoline: 16,000 each.

† Sales potential for by-products: unlimited.
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† Blending floor for catalytic in regular gasoline: at least 50 percent catalytic.

† Blending floor for catalytic in premium gasoline: at least 75 percent catalytic.

To complete the model, we need the economic factors that make up the objective
function. Suppose the following parametric assumptiosns apply.

† Cost of crude oil: $28 per barrel.

† Cost of operating the tower: $5 per barrel of crude.

† Cost of operating the cracker: $6 per barrel of feedstock.

† Revenue for high-end and low-end by products: $44 and $36 per barrel.

† Revenue for regular and premium gasoline: $50 and $55 per barrel.

Figure 3.18 shows a spreadsheet model for the entire problem. Balance equations
form the kernel of the model in rows 12–20. The next pair of constraints, in rows
21–22, contains the blending quality requirements for the grades of gasoline.
Finally, the four constraints in rows 23–26 contain the ceilings on production
capacities and sales volumes. These could alternatively be incorporated as upper
bounds on the variables Crude, Feed, Reg, and Prem.

The objective function is made up of revenue from the sales of outputs, the cost of
operations, and the cost of input materials. For clarity, we devote a row of the spread-
sheet to each of these components of the objective function, recognizing that several of
these cells do not apply. In fact, intermediate products such as distillate are not directly

Figure 3.18. Spreadsheet model for Example 3.6.
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associated with any costs or revenues at all. The value of the objective function, cal-
culated as a SUMPRODUCT, appears in cell O9. The model specification is
as follows.

Objective: O9 (maximize)
Variables: B4:N4
Constraints: O12:O20 ¼ Q12:Q20

O21:O22 � Q21:Q22
O23:O26 � Q23:Q26

Figure 3.18 displays the optimal solution to Delta Oil Company’s refining
problem. In brief, the solution achieves a profit contribution of $466,400. It calls
for purchases of 49,333 barrels of crude oil. This quantity leaves the tower with a
small amount of excess capacity, but cracker capacity is fully utilized by the
optimal allocation of distillate. Sales of regular gasoline are limited by market
potential, but this is not the case for premium. Both gasoline products are blended
at their minimum quality requirements, suggesting that catalytic is a scarce resource.
A brief look at the decision variables reveals that there is flow on every arc in the net-
work diagram.

BOX 3.3
Characteristics of General Network Models for
Transformation Processes

Decision variables

Arcs correspond to materials generated at any stage of the process.

Define variables as convenient to track costs and revenues.

Intermediate products appear as arcs, possibly without cost or revenue.

Objective function

Net revenue or variable cost can be captured as a SUMPRODUCT.

Maximize net revenue or minimize variable cost in standard form.

Constraints

Nodes correspond to stages of the process.

An equation corresponds to each transshipment node.

At each transformation node, one equation for each output product.

Rest of the model

Augment the network kernel with capacities and demands.

Add lower bounds and upper bounds as needed.
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Viewed as strategic information, the optimal solution provides useful insights
into the determinants of profitability at Delta Oil. Of the two main pieces of process
equipment, the cracker is currently the more constraining; however, the tower is not
far behind. Capacity may have to be raised in both places for Delta to significantly
increase its profits. On the output side, profits are also constrained by demand for regu-
lar gasoline. If the marketing department could find additional customers for regular
gasoline, this could also lead to increased profits. In short, the strategic implications
of the Delta Oil model are typical of product-mix models; however, the construction
of the model itself is driven by network-modeling principles.

Returning to the network structure, which lies at the heart of the Delta Oil model,
we highlight the key features in Box 3.3.

SUMMARY

This chapter has introduced the network model to accompany allocation, covering, and blending
models as one of the four basic linear programming types. The network model is uniquely
adapted to the use of network flow diagrams, which can help substantially in constructing
and debugging a spreadsheet model.

Among network models, a set of important cases are called special networks. Special net-
work models arise frequently in distribution problems faced by industry. These models also have
a structure that leads naturally to a distinctive array-based format for spreadsheet use. The use of
arrays reflects the natural From/To structure in the problem itself, which lends itself readily to
the row-and-column layout of a spreadsheet. (The array format adds an important case to the
standard linear programming format covered in Chapter 2.) Special networks are usually formu-
lated with inequality constraints; although from a more general perspective, these constraints are
intuitive simplifications of a set of balance equations.

General network models illustrate the application of balance equations as a means of
structuring an optimization problem. The overarching framework for these models is the same
standard layout that was emphasized in Chapter 2. Nevertheless, the use of balance equations pro-
vides us with a simple recipe for developing a model (or a portion of a model) made up of EQ
constraints. These constraints can be formulated directly from an accompanying flow diagram.

EXERCISES

3.1. Distributing a Product The Nicklaus Razor Blade Company plans to test market a new
blade next month. The blades will be stocked in their three warehouses in the following
quantities.

Warehouse A B C

Stock (cartons) 50 50 50

Meanwhile, the carton quantities required by the distributors in the four test markets are
as follows.

Distributor D E F G

Requirement 45 15 25 20
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The unit costs (in dollars per carton) of shipping the blades from warehouses to distribu-
tors are given in the table below.

D E F G

A 8 10 6 3
B 9 15 8 6
C 5 12 5 7

(a) NRBC wishes to meet the distributor’s requirements at the minimum total transpor-
tation cost. Find the optimal plan.

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

3.2. Assigning Tasks Suppose a data processing department wishes to assign five program-
mers to five programming tasks (one programmer to each task). Management has esti-
mated the total number of days each programmer would take if assigned to the
different jobs, and these estimates are summarized in the following table.

Task 1 2 3 4 5

Programmer

1 50 25 78 64 60
2 43 30 70 56 72
3 60 28 80 66 68
4 54 29 75 60 70
5 45 32 70 62 75

(a) Determine the assignment that minimizes the total programmer days required to
complete all five jobs.

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

(c) How would your solution change if programmer 3 could not be assigned to tasks 2 or 4?

3.3. Shipping Grain The Sadeghian Company is in the business of buying and selling
grain. An important aspect of the company’s business is arranging for the purchased
grain to be shipped to customers. If the company can keep freight costs low, its profitabil-
ity will be improved. Currently, the company has purchased three rail cars of grain at
Peoria, seven rail cars at Iowa City, and six rail cars at Lawrence. Fourteen carloads of
grain have been sold. The locations and the amount sold at each location are as follows.

Location Rail car loads

Augusta 2
Gainesville 4
Oxford 3
Columbia 5
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All shipments must be routed through either Louisville or Dayton. Shown below are
the shipping costs per rail car from the origins to Louisville and Dayton and the costs
per rail car to ship from Louisville and Dayton to the destinations.

Louisville Dayton

Peoria 1800 1500
Iowa City 1400 1900
Lawrence 1200 1600

Augusta Gainesville Oxford Columbia

Louisville 4400 3600 3300 3200
Dayton 4200 3500 3100 2700

(a) Determine a shipping schedule that will minimize the freight costs necessary to
satisfy demand.

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

3.4. Distributing a Product The Lincoln Lock Company manufactures a commercial
security lock at plants in Atlanta, Louisville, Detroit, and Phoenix. The unit cost of pro-
duction at each plant is $35.50, $37.50, $37.25, and $36.25, and the annual capacities are
18,000, 15,000, 25,000, and 20,000, respectively. The locks are sold through wholesale
distributors in seven locations around the country. The unit shipping cost for each plant–
distributor combination is shown in the following table, along with the forecasted demand
from each distributor for the coming year.

Tacoma
San

Diego Dallas Denver St Louis Tampa Baltimore

Atlanta 2.50 2.75 1.75 2.00 2.10 1.80 1.65
Louisville 1.85 1.90 1.50 1.60 1.00 1.90 1.85
Detroit 2.30 2.25 1.85 1.25 1.50 2.25 2.00
Phoenix 1.90 0.90 1.60 1.75 2.00 2.50 2.65

Demand 5.500 11.500 10.500 9.600 15.400 12.500 6.600

(a) Determine the least costly way of shipping locks from plants to distributors.

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

(c) Suppose that the unit cost at each plant were $10 higher than the original figure. What
change in the optimal distribution plan would result? What general conclusions can
you draw for transportation models with nonidentical plant-related costs?
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3.5. Repositioning Supply The American Rent-a-Car Company has eight outlets in a
metropolitan area. American operates under a policy that calls for a specific “target” per-
centage of all available cars to be located at each outlet at the start of each day. These per-
centages are summarized in the following table.

Outlet 1 2 3 4 5 6 7 8

Percentage 20 10 20 5 10 20 5 10

For example, if 50 cars are available, 10 should be at outlet 1 at the start of the day. At the
end of a day, if the current distribution of cars does not comply with the targets, American
employees drive the cars overnight from outlet to outlet so that the new distribution meets
the specified targets. The distance between each pair of outlets is given in the following
table.

To outlet
1 2 3 4 5 6 7 8

From outlet

1 – 8 6 7 3 5 4 2
2 8 – 6 5 8 4 6 7
3 6 6 – 8 3 4 7 4
4 7 5 8 – 9 5 3 7
5 3 8 3 9 – 5 6 2
6 5 4 4 5 5 – 3 3
7 4 6 7 3 6 3 – 4
8 2 7 4 7 2 3 4 –

At the end of a particular day, American finds that the 100 cars currently available are
distributed at the outlets as follows.

Outlet 1 2 3 4 5 6 7 8

Cars 4 14 5 17 22 7 10 21

(a) Given this distribution of cars, find a schedule for minimizing the total distance
traveled during the overnight redistribution of the cars.

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

3.6. Designing a Distribution System The Krotzer Company manufactures and distributes
meters used to measure electric power consumption. The company started with a small
production plant in El Paso and gradually built a customer base throughout Texas.
A distribution center was established in Ft Worth, and later, as the business expanded,
a second distribution center was established in Santa Fe. The El Paso plant was expanded
when the company began marketing its meters in Arizona, California, Nevada, and Utah.
With the growth of the West Coast business, the company opened a third distribu-
tion center in Las Vegas and just two years ago opened a second production plant
in Sacramento.
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Manufacturing costs differ between the company’s production plants. The cost of
each meter produced at the El Paso plant is $10.50. The Sacramento plant uses newer
and more efficient equipment, and as a result, its manufacturing costs come to only
$10.00 per unit.

The quarterly production capacity is 30,000 meters at the older El Paso plant and
20,000 meters at the Sacramento plant. No shipments are allowed from the Sacramento
plant to the Ft. Worth distribution center.

Due to the firm’s rapid growth, little attention has been paid to the efficiency of the
distribution system, but company management has decided that it is time to address this
issue. The cost of shipping a meter from each of the two plants to each of the three dis-
tribution centers is shown in the following table.

Distribution center

Plant Ft Worth Santa Fe
Las

Vegas

El Paso 3.20 2.20 4.20
Sacramento – 3.90 1.20

The company serves nine customer zones from the three distribution centers. The
forecast for the number of meters needed in each customer zone for the next quarter is
shown in the following table.

Customer Demand
zone (meters)

Dallas 6300
San Antonio 4880
Wichita 2130
Kansas City 1210
Denver 6120
Salt Lake City 4830
Phoenix 2750
Los Angeles 8580
San Diego 4460

The cost per unit of shipping from each distribution center to each customer zone is
given in the following table. Note that some distribution centers do not serve certain
customer zones because the costs would be prohibitive.

Customer zone

DC Dal SA Wich KC Den SLC Pho LA SD

FW 0.30 2.10 3.10 4.40 6.00 – – – –
SF 5.20 5.40 4.50 6.00 2.70 4.70 3.40 3.30 2.70
LV – – – – 5.40 3.30 2.40 2.10 2.50
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In the current distribution system, demand at the Dallas, San Antonio, Wichita, and
Kansas City customer zones is satisfied by shipments from the Ft Worth distribution
center. In a similar manner, the Denver, Salt Lake City, and Phoenix customer zones
are served by the Santa Fe distribution center, and the Los Angeles and San Diego cus-
tomer zones are served by the Las Vegas distribution center. The El Paso plant supplies
the Ft. Worth and Santa Fe distribution centers, while the Sacramento plant supplies the
Las Vegas distribution center.

You have been called in to make recommendations for improving the distribution
system, and, in particular, to address the following issues.

(a) If the company does not change its current distribution strategy, what will the distri-
bution system cost be for the following quarter?

(b) Suppose that the company is willing to consider dropping the distribution center
limitations. In other words, customer zones would not necessarily be assigned
to unique distribution centers, and distribution centers would not necessarily be
assigned to unique plants. With this added flexibility, by how much could costs be
reduced?

(c) In the foreseeable future, the company anticipates moderate growth of about 20 per-
cent in demand. Suppose this growth is met using the current routes and expanding
plant capacity as needed. What plant capacities would be required? What would be
the total system cost?

(d) Relative to the cost in part (c), how much could both distribution flexibility and plant
capacity save in annual expenses? What plant capacities would be required?

3.7. Oil Distribution Texxon Oil Distributors, Inc., has three active oil wells in a west Texas
oil field. Well 1 has a capacity of 93 thousand barrels per day (TBD), Well 2 can produce
88 TBD, and Well 3 can produce 95 TBD. The company has five refineries along the Gulf
Coast, all of which have been operating at stable demand levels. In addition, three pump
stations have been built to move the oil along the pipelines from the wells to the refineries.
Oil can flow from any one of the wells to any of the pump stations, and from any one of the
pump stations to any of the refineries, and Texxon is looking for a minimum cost sche-
dule. The refineries’ requirements are as follows.

Refinery R1 R2 R3 R4 R5

Requirement (TBD) 30 57 48 91 48

The company’s cost accounting system recognizes charges by the segment of
pipeline that is used. These daily costs are given in the tables below, in dollars per thou-
sand barrels.

To Pump A Pump B Pump C

Well 1 1.52 1.60 1.40
From Well 2 1.70 1.63 1.55

Well 3 1.45 1.57 1.30

To R1 R2 R3 R4 R5

Pump A 5.15 5.69 6.13 5.63 5.80
From Pump B 5.12 5.47 6.05 6.12 5.71

Pump C 5.32 6.16 6.25 6.17 5.87
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(a) What is the minimum cost of providing oil to the refineries? Which wells are used to
capacity in the optimal schedule?

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

3.8. College Expenses Revisited Revisit the college expense planning network example of
this chapter. Suppose the rates on the four investments A, B, C, and D have dropped to 5,
11, 18, and 55 percent, respectively. Suppose that the estimated yearly costs of college (in
thousands) have been revised to 25, 27, 30, and 33.

(a) What is the minimum investment that will cover these expenses?

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

3.9. Cash Planning A startup investment project needs money to cover its cash flow needs.
The cash income and expenditures for the period January through April are as follows.

Jan. Feb. Mar. Apr. Total

Cash flow ($000) 2150 2450 500 250 150

At the beginning of May all excess cash will be paid out to investors. There are two ways
to finance the project. One is the possibility of taking out a long-term loan at the beginning
of January. The interest on this loan is 1 percent per month, payable on the first of the
month for the next three months. This loan can be as large as $400,000; the principal
is due April 1; and no prepayment is permitted. The alternative is a short-term loan
that can be taken out at the beginning of each month. This loan must be paid back at
the beginning of the following month with 1.2 percent interest. A maximum of
$300,000 may be used for this short-term loan in any month. In addition, investments
may be made in a money-market fund at the start of each month. This fund will pay
0.7 percent interest at the beginning of the following month. Assume the following
about the timing of cash flows.

† For months in which there is a net cash deficit, sufficient funds must be on hand at the
start of the month to cover the net outflow.

† For months in which there is a net cash surplus, the net inflow cannot be used until the
end of the month (i.e., the start of the next month).

(a) What is the maximum amount that can be returned to investors? What is the optimal
amount of money to borrow from each of the potential loan sources?

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

(c) Explain the cost of funds for each month in the planning period. That is, if there were
a $1000 change in the cash flows for any month, what would be the dollar change in
the amount returned to investors?

3.10. Planning Cash Each Fall, the treasurer of Trefny’s department store does financial
planning for the next 6 months, September through February. Because of the holiday
season Trefny’s needs large amounts of cash during October, November, and
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December, whereas a large cash inflow is expected after the first of the year when custo-
mers pay off their holiday bills. The following table summarizes the predicted net cash
flows (in thousands) from “business as usual” operations.

Month Sep Oct Nov Dec Jan Feb

Surplus $20 – – – 30 150
Deficit – 30 60 90 – –

The treasurer has three sources of short-term funds to meet the store’s needs, although
these represent departures from “business as usual.” These are as follows.

† Accounts Receivable Loans. A local bank will loan Trefny’s funds on a month-by-
month basis against a pledge on the accounts receivable balance as of the first day of
a particular month. The maximum loan is 75 percent of the balance, and the cost of
the loan is 1.5 percent per month, assessed on the amount borrowed. The predicted bal-
ances (in thousands) under “business as usual” plans are shown below.

Month Sep Oct Nov Dec Jan Feb

Balance $70 50 70 110 100 50

† Delayed Payment of Purchases. All bills for purchases come due on the first of the
month, but payments on all or part of these obligations can be delayed by one
month. When payments are delayed this way, Trefny’s loses the 2 percent discount it
normally receives for prompt payment under “business as usual” operations. (Loss
of this 2 percent discount is effectively a financing cost.) The predicted payment sche-
dule (in thousands) without the discount is shown below.

Month Sep Oct Nov Dec Jan Feb

Payment $80 90 100 60 40 50

† Short-Term Loan. A bank is willing to loan Trefny’s any amount from $40,000
to $100,000 for 6 months, starting September 1. The principal would be paid back at
the end of February, and Trefny’s would not be permitted to pay off part of the loan,
or add to it, during the 6-month period. The cost of the loan is 1 percent per month,
payable at the end of each month.

In any month, excess funds can be transferred to Trefny’s short-term investment portfolio,
where the funds can earn 0.5 percent per month.

(a) Determine a plan for the treasurer that will meet the firm’s cash needs at minimum
cost. (Assume that all cash flows occur at the beginning of the month.) What is the cost
of this plan? Equivalently, what is the maximum amount of funds on hand after
February?

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

3.11. Planning a National Economy The country of Utopia has a newly appointed Minister
of International Trade. She has decided that Utopia’s welfare can be served best in
the upcoming year by maximizing the net dollar value of Utopia’s exports (i.e., the
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dollar value of the exports minus the cost of the materials imported to produce the
exports). The following information is relevant to this decision.

† Utopia produces only three products: steel, machinery, and trucks. For the coming year,
the minister feels Utopia can sell all it can produce of these three products on the export
market at the existing world market prices of $900 per ton of steel, $2500 per machine,
and $3000 per truck.

† To produce one ton of steel, it takes 0.05 machines, 0.08 trucks, 0.5 person-years of
labor, and imported materials costing $300. Utopia’s steel mills have the capacity to
produce up to 300,000 tons per year.

† To produce one machine, it takes 0.75 tons of steel, 0.12 trucks, 5 person-years of labor,
and imported materials costing $150. Utopia’s machinery plants have the capacity to
produce up to 50,000 machines per year.

† To produce one truck, it takes 1 ton of steel, 0.1 machine, 3 person-years of labor, and
imported materials costing $500. Utopia’s truck plants have the capacity to produce up
to 550,000 trucks per year.

† The pool of labor in Utopia is equivalent to 1,200,000 person-years.

The minister plans to issue a self-sufficiency edict, declaring that Utopia cannot import
steel, machinery, or trucks. She would like to determine the optimal production quantities
and optimal export quantities for steel, machinery, and trucks when that edict is in force.

(a) Find the optimal export plan for Utopia’s economy, under self-sufficiency.

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

(c) Describe, in simple terms that a nontechnical citizen can understand, the solution’s
message to Utopia for how to manage its economy.

3.12. Retirement Planning Your uncle has $90,000 that he wishes to invest now in order to
use the accumulation for purchasing a retirement annuity in five years. After consulting
with his financial advisor, he has been offered four types of fixed-income investments,
labeled as investments A, B, C, and D.

Investments A and B are available at the beginning of each of the next five years (call
them years 1–5). Each dollar invested in A at the beginning of a year returns $1.20
(a profit of $0.20) two years later, in time for immediate reinvestment. Each dollar
invested in B at the beginning of a year returns $1.36 three years later.

Investments C and D will each be available just once in the future. Each dollar
invested in C at the beginning of year 2 returns $1.66 at the end of year 5. Each dollar
invested in D at the beginning of year 5 returns $1.12 at the end of year 5.

Your uncle is obligated to make a balloon payment on an existing loan in the amount
of $24,000 at the end of year 3. He wants to make that payment out of the investment
account.

(a) Devise an investment plan for your uncle that maximizes the value of the investment
account at the end of five years. How much money will be available for the annuity in
five years?

(b) Show the network diagram corresponding to the solution in (a). That is, label each
of the arcs in the solution and verify that the flows are consistent with the given
information.
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3.13. Workforce Planning A software company is anticipating increased demand for its
products. However, management is concerned about the adequacy of their programmers
to meet the increased demand given the history of workforce turnover (5 percent of the
programmers leave the company at the end of each month). Rather than hiring new
workers, management is contemplating enrolling some or all of their programmers in a
month-long intensive training program. After the successful completion of the training
program, a programmer would receive an increase in salary and would also sign a contract
not to leave the company for at least 6 months. Trained programmers would therefore be
immune from normal turnover.

Management believes that successful completion of the program would increase
a programmer’s productivity by 20 percent and plans to implement a no-layoff
policy to encourage participation. However, only 90 percent of the programmers
are predicted to complete the training program successfully. Those who enroll in training
but do not complete the program successfully will return to the workforce at their
pre-training skill level. (For simplicity, assume that they are not candidates for
turnover during their training month and that they can enroll in the training program
again later.)

The monthly demand for untrained programmers for the next six months is shown in
the table below. If trained programmers are available, their higher productivity allows
management to satisfy demand with fewer programmers. For example, the demand in
January can be satisfied with 100 untrained programmers, or with 82 untrained and 15
trained programmers (since 82 þ 1.20 � 15 ¼ 100).

Number of untrained programmers required

Month Jan Feb Mar Apr May Jun

Programmers 100 100 115 125 140 150

A programmer cannot be engaged in production and participate in the training
program during the same month. At the beginning of January, there are 145 (untrained)
programmers on the workforce. Monthly payroll costs to the company are $3000 per
untrained programmer (engaged in either production or the training program) and
$3300 per trained programmer.

(a) Determine a training schedule for the months of January through June that meets
the workforce requirements at minimum cost. What is the optimal cost? (Allow for
fractional decisions.)

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

(c) If the company had one less programmer initially (i.e., a workforce of 144), would the
cost be higher or lower, and by how much?

(d) If, at the margin, the company could shift demand from June to April (i.e., so that
June demand is lower and April demand is higher by the same amount), would the
cost be higher or lower, and by how much?

3.14. Workforce Training A department store experiences significant increase in the
number of customers toward the end of each calendar year. To accommodate the cus-
tomers, the store has to make sure there are enough salespeople available. Starting in
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July of each year, the store hires new salespeople who have to be trained by the sales-
people already working in the store. The training takes one month, and one salesper-
son can train up to 20 new trainees every month. (The trainers are exclusively
committed to training during the month, and are not part of the active sales force.)
Experience has shown that one in every 10 trainees fails to complete the training.
The estimated monthly demands for salespeople in the second half of the year
are shown in the table below. As of July, 150 salespeople are available for sales or
training, and personnel records indicate that 3 percent of workforce leave the store
at the end of each month. Each trainee is paid $2000 per month, while each sales
person is paid $3000 per month, with a $500 monthly premium when they are
assigned to training. The store’s policy is not to lay off salespeople in the second
half of the year.

Month
Salespeople

required

July 120
August 135
September 150
October 150
November 170
December 200

(a) Determine a training schedule for the months of July through December that meets
the demand requirements at the least cost. What is the optimal hiring plan? (Allow
for fractional decisions.) What is the optimal cost?

(b) Show the network diagram corresponding to the solution in (a). That is, label each of
the arcs in the solution and verify that the flows are consistent with the given
information.

Case: Casey’s Famous Roast Beef

Casey’s Famous Roast Beef employs mostly high school and college age workers.
However, a few employees have been with the company for long time, and owner Casey
Carangelo has calculated that he will need the following cash flows to pay his loyal pensioners
over the next 14 years. (This year is considered to be year 0.)

Year 01 02 03 04 05 06 07 08 09 10 11 12 13 14

Cash (000s) 8 10 12 14 15 16 17 18 20 22 23 24 25 26

Mr. Carangelo doesn’t believe in modern portfolio theory, with its emphasis on diversification.
His brief foray into the market during 2008 ended disastrously. The only investments he trusts
are US Government bonds. His accountant has recommended three currently available bonds.
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Current Annual Years to Face
price coupon maturity value

Bond 1 $980 $50 5 $1000
Bond 2 $970 $55 11 $1000
Bond 3 $990 $60 14 $1000

All bonds will pay their face value when they mature. Their current price is what it costs to
buy the bond at the end of this year. Each bond pays its annual coupon (interest, in effect) every
December 31, starting next year. At maturity, each bond repays its face value plus the final
coupon payment for that year on December 31.

Cash that is carried over from one year to the next (as well as any cash in the portfolio at the
start) will be placed in an interest-bearing savings account that currently earns 3 percent per year.
Mr Carangelo believes that this rate will remain stable.

Mr Carangelo wants the pension fund, once started, to be self-sustaining over the next four-
teen years. In other words, he plans to make a single withdrawal from corporate sources at the
start of next year and invest it such that the income from his bonds, plus savings interest, will
cover the pension payments each year.

In effect, the following events will happen each December 31, starting next year.

† Mr Carangelo withdraws all the savings account funds, with interest;

† He receives all bond payments;

† He pays required pension benefits;

† He deposits any remaining funds back into the savings account to earn interest over the
following year.

Ideally, there should be no money left at the end of the 14-year period.
Mr Carangelo, who knows very little about investments and nothing about linear program-

ming, has asked you to help him figure out how to set up the pension fund.

Case: Hollingsworth Paper Company

The Hollingsworth Paper Company is an integrated manufacturer of paper products for
markets throughout the US. Its Container Division produces corrugated cardboard boxes at
four plants and sells through six regional distribution centers (DCs). Last year’s sales of
nearly 60,000 tons accounted for revenues of almost $30 million. Exhibit 3.1 gives a regional
breakdown of sales.

Cardboard containers are designed to meet a variety of customer needs. This variety
reflects such features as size, shape, thickness, and type of closure. However, the technology
is fairly simple and the competitors have the capability to manufacture the same products. To
maintain its 10 percent share of the market, Hollingsworth emphasizes its quick and reliable
delivery service. The firm has established its DCs to stock most of its standard items close to
the major demand locations, but even specialty orders are processed through the DCs just to sim-
plify paperwork.

Because there are several firms in the industry, and because few proprietary advantages
exist, the market for cardboard boxes is quite competitive. The prices offered to the customer

114 Chapter 3 Linear Programming: Network Models



are virtually the same no matter where the product is made or what its delivery route. This means
that the manufacturer absorbs its own freight costs. With price competition as strong as it is,
Hollingsworth’s freight costs are a critical part of the profit picture.

Production and Distribution Facilities
At present Hollingsworth has four plants with one-shift capacities in the range of 12,000 to
16,000 tons per year. At two of the four plants, production last year fell below one-shift capacity,
while in the other two plants a substantial amount of second shift output was necessary. This
pattern reflected the concentration of sales in the Midwest and South. Exhibit 3.2 provides
details.

The plant located in Nashua, New Hampshire, is Hollingsworth’s oldest facility. Its layout
and equipment are somewhat outmoded; consequently, its productivity is relatively low. The
Portland, Oregon, plant is the company’s newest site, with a workforce roughly one half the
size of Nashua’s. Labor rates are cheapest at Asheville, North Carolina, and most expensive
at St Louis, Missouri. Variations in the process and wage rates, together with different utiliz-
ations, result in somewhat different costs at each location. An accounting summary of last
year’s operations revealed that costs per ton varied from a low of $397.61 at Portland to a
high of $448.30 at Nashua. Exhibits 3.3–3.5 provide some additional detail on these cost
figures.

Patterns of Distribution
Facing a competitive market with tight margins, Hollingsworth has paid particular attention to
its freight costs. For a number of years, its policy has been to supply each DC from the nearest
plant, thus minimizing the freight component of cost. Exhibit 3.6 lists last year’s freight rates.

EXHIBIT 3.2 Plant Capacities and Production

Plant
One-shift
capacity Production

% Utilization of
one-shift capacity

Nashua, NH 14,000 T 12,300 T 88%
Asheville, NC 12,000 T 15,500 T 129%
St Louis, MO 16,000 T 23,500 T 147%
Portland, OR 12,000 T 7500 T 63%

Total 54,000 T 58,800 T 109%

EXHIBIT 3.1 Last Year’s Sales by Geographic Region

Northeast sales (Boston DC) 2600 T 4%
Northeast sales (Philadelphia DC) 9700 T 16%
Southeast sales (Atlanta DC) 15,500 T 26%
Midwest sales (Chicago DC) 10,100 T 17%
Southwest sales (Houston DC) 13,400 T 23%
Far West sales (San Francisco DC) 7500 T 13%

58,800 T 100%
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Under this company policy, the Nashua plant supplies the Boston and Philadelphia DCs,
Asheville supplies the Atlanta DC, St Louis supplies the Chicago and Houston DCs, and
Portland supplies the San Francisco DC. This pattern results in very different profits in the var-
ious regions, ranging from around $40 per ton in Chicago to a slight loss in Philadelphia. The
DC managers, whose annual bonus partly reflects the profits made in their region, have com-
plained about this system for years. Exhibit 3.7 summarizes last year’s records.

Expansion Proposals
Over the years Hollingsworth has made investments to improve its productive capacity in several
places. As sales in the Midwest grew, the St Louis plant was expanded. New equipment was
installed in Asheville to keep pace with sales growth in the South. Based on these experiences,
the engineering staff was eventually able to design the new Portland plant, which reduced the
cost of meeting demand in the West. Few improvements, however, have been implemented at
Nashua. The two-story layout hampers innovation, and the engineers have expressed some

EXHIBIT 3.4 Plant Variable Costs (per ton)

Materials Labor Supervision
Other

overhead
Fringe

benefits� Total

Nashua
1st Shift $299.20 $104.00 $19.60 $3.40 $13.60 $439.80
2nd Shift 299.20 110.80 20.80 3.40 14.48 448.68

Asheville
1st Shift 305.20 76.00 13.00 1.20 9.79 405.19
2nd Shift 305.20 81.00 13.60 1.20 10.41 411.41

St Louis
1st Shift 301.20 74.60 12.40 0.90 9.57 398.67
2nd Shift 301.20 78.80 13.10 0.90 10.11 404.11

Portland
1st Shift 299.20 61.40 10.10 1.10 7.87 379.67
2nd Shift 299.20 65.00 10.70 1.10 8.33 384.33

�11% of labor and supervision.

EXHIBIT 3.3 Total Costs (per ton)

Plant
Variable

cost
Allocated
fixed cost

Total
cost

Nashua $439.80 $8.50 $448.30
Asheville 406.59 10.32 416.91
St Louis 400.41 8.08 408.49
Portland 379.67 17.95 397.61
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EXHIBIT 3.5 Plant Fixed Costs

Supervision
Fringe

benefits�
Other

overhead Depreciation Total

Nashua
1st Shift $60,000 $6600 $8000 $30,000 $104,600
2nd Shift 30,000 3300 2000 – 35,300

Asheville
1st Shift 60,000 6600 8000 50,000 124,600
2nd Shift 30,000 3300 2000 – 35,300

St Louis
1st Shift 60,000 6600 8000 80,000 154,600
2nd Shift 30,000 3300 2000 – 35,300

Portland
1st Shift 60,000 6600 8000 60,000 134,600
2nd Shift 30,000 3300 2000 – 35,300

�11% of labor and supervision.

EXHIBIT 3.6 Last Year’s Transportation Rates per Ton

To

From Boston Philadelphia Atlanta Chicago Houston San Francisco

Nashua $16.00 $20.00 $64.00 $56.00 $72.00 $104.00
Asheville 52.00 48.00 20.00 56.00 56.00 88.00
St Louis 56.00 52.00 56.00 20.00 32.00 72.00
Portland 112.00 112.00 104.00 64.00 68.00 36.00
Houston 64.00 60.00 48.00 30.00 0.00 76.00

EXHIBIT 3.7 Last Year’s Profits per Ton

Selling
price

Cost of
goods sold

Warehousing
selling &�

admin. exp.
Freight

absorbed
Net profits

before taxes

Boston $500.00 $448.30 $32.00 $16.00 $3.70
Philadelphia 500.00 448.30 32.00 20.00 (0.30)
Atlanta 500.00 416.91 29.00 20.00 34.09
Chicago 500.00 408.49 31.00 20.00 40.51
Houston 500.00 408.49 30.00 32.00 29.51
San Francisco 500.00 397.61 32.00 36.00 34.39

�Includes a 4% sales commission.
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concern about whether the old building is strong enough to support some of the heavier pieces of
machinery now used elsewhere.

As a continuation of these investment initiatives, the Facilities Planning Committee at
Hollingsworth has produced two large-scale expansion plans to help meet predicted sales
growth over the next 8–10 years. One proposal involves a large addition to the St. Louis
plant, while the second proposal involves construction of a new plant in Houston.

The St Louis proposal calls for an expansion of the existing plant sufficient to raise its
annual one-shift capacity to 28,000 tons. The cost for the building for this expansion has
been estimated at $1.6 million, and there is adequate land at the St Louis site. The equipment
investment is estimated to be $1.5 million. The plant expansion would afford Hollingsworth
an opportunity to use the latest machinery available.

The Houston proposal calls for building a new plant with annual one-shift capacity of
12,000 tons. Although Hollingsworth already has a DC located in Houston, there would be a
need to purchase land for the new plant. The cost of land is estimated at $500,000. The plant
itself would cost about $2 million, while the investment in equipment is estimated at $1.5
million, since the technology would be much the same as in the St Louis expansion. Exhibit
3.8 shows additional estimates for the two proposals.

As mentioned earlier, the Facilities Planning Committee anticipates that some kind of
expansion will be needed to meet the needs of the market during the next 8–10 years. Over
that period, the costs of labor, materials and freight are likely to increase at slightly different
rates, but the company controller has commented that the firm’s cost structure is not likely to
change drastically.

EXHIBIT 3.8 Anticipated Costs for New Facilities

Houston St Louis

Variable Costs per Ton
Direct materials $302.40 $301.20
Direct labor 57.00 60.40
Supervision 9.00 10.00
Other overhead� 1.00 1.00

Fixed Operating Costs Per Year
Supervision $60,000 $40,000
Other overhead� 8000 8000

�Includes supplies, heat, light, power, insurance.
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Chapter 4

Sensitivity Analysis in
Linear Programs

As described in Chapter 1, sensitivity analysis involves linking results and conclusions
to initial assumptions. In a typical spreadsheet model, we might ask what-if questions
regarding the choice of decision variables, looking for effects on the performance
measure. Eventually, instead of asking how a particular change in the decision vari-
ables would affect the performance measure, we might search for the changes in
decision variables that have the best possible effect on performance. That is the
essence of optimization. In Excel, the Data Table tool allows us to conduct such a
search, at least for one or two decision variables at a time. An optimization procedure
performs this kind of search in a sophisticated manner and can handle several decision
variables at a time. Thus, we can think of optimization as an ambitious form of sensi-
tivity analysis with respect to decision variables.

In this chapter, we consider another kind of sensitivity analysis—with respect
to parameters. Here, we ask what-if questions regarding the choice of a specific para-
meter, looking for the effects on the objective function and the effects on the optimal
choice of decision variables. Sensitivity analysis has an elaborate and elegant structure
in linear programming problems, and we approach it from three different perspectives.
First, to underscore the analogy with sensitivity analyses in simpler spreadsheet
models, we explore a Solver-based approach that resembles the Data Table tool.
Second, we summarize the traditional form of sensitivity analysis, which is also avail-
able in Solver. Third, we introduce an interpretation that relies on discovering quali-
tative patterns in optimal solutions. This pattern-based interpretation enhances and
extends the more mechanical sensitivity analyses that the software carries out, and
makes it possible to articulate the broader message in optimization analyses.

For the most part, we examine sensitivity analysis with respect to two kinds of
parameters in particular—objective function coefficients and constraint constants.
The general thrust of sensitivity analysis is to examine how the optimal solution
would change if we were to vary one or more of these parameters. However, the
flip side of this analysis is to examine when the optimal solution would not change.
In other words, an implicit theme in sensitivity analysis, especially for linear
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programming models, is to discover robust aspects of the optimal solution—features
of the solution that do not change at all when one of the parameters changes. As we
will see, this theme becomes visible as a kind of “insensitivity analysis” in our
three approaches.

Sensitivity analysis is important from a practical perspective. Because we seldom
know all of the parameters in a model with perfect accuracy, it makes sense to study
how results would differ if there were some differences in the original parameter
values. If we find that our results are robust—that is, a change in a parameter causes
little or no change in our decisions—then we tend to proceed with some confidence
in those decisions. On the other hand, if we find that our results are sensitive to the
accuracy of our numerical assumptions, then we might want to go back and try to
obtain more accurate information, or we might want to develop alternative plans in
case some of our assumptions are not borne out. Thus, tracing the relation between
our assumptions and our eventual course of action is an important step in “solving”
the problem we face, and sensitivity analyses can often provide us with the critical
information we need.

4.1. PARAMETER ANALYSIS IN THE
TRANSPORTATION EXAMPLE

In a simple spreadsheet model, we might change a parameter and record the effect
on the objective function. In Excel, the Data Table tool automates this kind of
analysis for one or two parameters at a time. Risk Solver Platform (RSP) provides a
similar tool that allows us to change a parameter, re-run Solver automatically, and
record the impact of the parameter’s change on the optimal value of the objective
function and on the optimal decisions. The output of the tool is the Parameter
Analysis Report.

As an illustration, we revisit the transportation problem introduced in Chapter 3.
In Example 3.1 (Goodwin Manufacturing Company), the model allowed us to find the
cost-minimizing distribution schedule in a setting with three plants shipping to four
warehouses. We encountered the optimal solution in Figure 3.2, which is reproduced
in Figure 4.1. The tight supply constraints are the Minneapolis and Pittsburgh
capacities and the optimal total cost in the base case is $13,830.

Suppose that we are using the transportation model as a planning tool and we want
to explore a change in the unit cost of shipping from Pittsburgh to Atlanta, which is
$0.36 in the base case. We might be negotiating with a trucking company over the
charge for shipping, so we want to study a range of alternative values for the PA
cost. Suppose that, as a first step, we are willing to examine a large range of values,
from $0.25 to $0.75. For this purpose we create a cell and enter the formula
=PsiOptParam(0.25,0.75). In Figure 4.1, we have reserved column I for sensi-
tivity parameters, and we enter the formula in cell I6. Then, in C6 we reference cell I6.
The PsiOptParam function displays the minimum value of its range, so the value $0.25
appears in both cell I6 and cell C6. (To restore the model, we would simply enter the
original unit cost of $0.36 in cell C6.)
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Next, we go to the drop-down menu on the Reports icon in the RSP ribbon and
select Optimization Q Parameter Analysis. The Multiple Optimizations Report,
shown in Figure 4.2, appears on the screen. In the Multiple Optimizations Report
window, we select the results to track in the upper part of the report and the par-
ameter(s) to vary in the lower part. In particular, we fill out the form by choosing
C18 as the objective function cell and C13:F13 as the variables to track. (These
four cells represent the optimal shipments from the Pittsburgh plant.) Those selections
appear in the upper right-hand window, as shown in Figure 4.3. As a general rule, we
prefer to have the objective function listed first, as shown in the figure. In the bottom
pair of windows, we select cell I6 as the parameter, so that the form looks like the
version shown in Figure 4.3.

Next, we have to specify the number of values between the parameter’s lower
limit of $0.25 and the upper limit of $0.75. If we specify 11 Major Axis Points, as
in Figure 4.3, the step size will be $0.05. (That is, starting at 0.25 and taking steps
of 0.05, the eleventh step will be 0.75.) Finally, we click OK on the form. The program
inserts a new worksheet in our workbook, labeled Analysis Report, and records the
results. Figure 4.4 displays the Parameter Analysis Report, slightly edited for better
readability.

The report shows how the optimal total cost changes and how the optimal
Pittsburgh shipments change as the unit cost of the PA route increases. The first
column of the table gives the values of the unit cost under study, from $0.25 to
$0.75. The second column gives the corresponding optimal total cost. The four
columns C–F, which were selected in Figure 4.3, show the various shipments from

Figure 4.1. Solution for Example 3.1.
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the Pittsburgh plant. Thus, for the range of unit costs ($0.25–$0.75), four distinct
profiles appear. For values of $0.30 and $0.35, the base case solution prevails
(5000 units to Atlanta and 10,000 units to Boston), but above and below those
values the optimal shipping schedule changes.

† At a unit cost of $0.25, the PA shipment is 8000 units, and 7000 units are
shipped on the PB route.

† At unit costs of $0.30 and $0.35, the PA shipment is 5000 units, while 10,000
units are shipped on the PB route. In effect, there is a shift away from the PA
route as its cost rises.

† At unit costs of $0.40–$0.65, the PA shipment is 3000 units, while 2000 units
are shipped on PC, as well as 10,000 units on PB. Thus, there is a shift away
from the PA route toward an entirely new route.

† At unit costs of $0.70 and above, the PA route is not used at all.

From this information, we can conclude that the optimal shipping schedule is
insensitive to changes in the PA unit cost, at least between $0.30 and $0.36. Below
that interval, the unit cost could become sufficiently attractive that we would want

Figure 4.2. Initial Multiple Optimizations Report.
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Figure 4.3. Selections in the Multiple Optimizations Report.

Figure 4.4. Parameter Analysis Report for PA unit cost.
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to shift some shipments to the PA route from PB. Above that interval, however, the unit
cost would become less attractive, and we would eventually want to shift some ship-
ments to the PC route. Subsequently, when the profit contribution reaches approxi-
mately $0.70, we would prefer not to use the PA route at all. Thus, as we face the
prospect of negotiating a unit cost for the PA route, we can anticipate the impact on
Pittsburgh shipments, and on the optimal total cost, from the information in the table.

Because we chose a grid of size $0.05, we don’t know the precise cost interval
over which the optimal shipping schedule remains unchanged. Since the original
unit cost was $0.36, we know that the cost will have to drop to below $0.30 in
order to induce a change in the size of the PA shipment. We also know that a cost
of $0.25 will be sufficient inducement to make a change. The precise cost at which
the change occurs must be somewhere between these two values. We can re-run the
Parameter Analysis Report with a grid of $0.01 to get a better idea of exactly where
the change occurs. One way to do so is to specify new lower and upper limits (such
as 0.25 and 0.40) in the PsiOptParam function and change the number of Major
Axis Points to 16. Figure 4.5 shows the resulting Parameter Analysis Report.

The refined grid shows that the optimal shipments do not change until the unit cost
drops below $0.27 or rises above $0.37. If we wanted to see an even finer grid, we
could produce another report with an even smaller step size. However, we can find
the precise range of “insensitivity” more directly by other means, as we shall see later.

Two important qualitative patterns are visible in Figure 4.4. First, when an objec-
tive function coefficient becomes more attractive, the amount of the corresponding
variable in the optimal solution will either increase or stay the same; it cannot drop.
(However, the increase need not be gradual: The PA shipment jumps from 0 to

Figure 4.5. Parameter Analysis Report on a refined grid.
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3000 to 5000 and to 8000 as we read up the table.) Second, when an objective function
coefficient becomes more attractive, the optimal value of the objective function either
stays the same or improves. In this example, the total cost remains unchanged when the
unit cost of the PA route is $0.70 or more; but for $0.65 and below, the total cost
decreases as the PA cost decreases.

In linear programs, a distinct pattern usually appears in sensitivity tables when we
vary a coefficient in the objective function. The optimal values of the decision vari-
ables remain constant over some interval of increase or decrease. Beyond this interval,
a slightly different set of decision variables becomes positive, and some of the
decision variables change abruptly, not gradually. Figure 4.5 illustrates these features
even in the limited portion of the optimal schedule that it tracks.

Solver also offers a Parameter Analysis Report for changes in a RHS constant.
Suppose that, starting from the base case, we wish to explore a change in the
Pittsburgh capacity. (The original figure was 15,000, and at that level, the capacity rep-
resents a scarce resource.) To prepare for this analysis, we first have to determine the
range of values to study, such as 14,000–24,000. Then we devote a cell in the sensi-
tivity area of the spreadsheet, such as I7, to this parameter. In this cell, we enter the
formula =PsiOptParam(14000,24000), and we reference this cell in G13. (To
make sure that the analysis varies only this capacity, we set cell C6 back to its original
value of $0.36.)

Next, we return to the Reports drop-down menu and ask for an Optimization
Parameter Analysis. Using 11 Major Axis Points, we can examine the effect of increas-
ing Pittsburgh capacity from 14,000 to 24,000 in steps of 1000. The report, slightly
edited, appears in Figure 4.6. The editing consists of making the titles and format
more helpful, but we have manually added column C. The entries in each row of
this column represent the incremental change in the optimal objective divided by
the change in the RHS constant, from the row above. The formula in cell C3 is
=(B2-B3)/(A2-A3), and it has been copied down the column.

Figure 4.6. Parameter Analysis Report for Pittsburgh capacity.
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The table shows how Pittsburgh shipments and the optimal total cost change as
Pittsburgh’s capacity varies. The columns correspond to the same outputs that were
selected for the previous table, except that the parameter we’ve varied (Pittsburgh
capacity) appears in the first column. The rows correspond to the designated series
of input values for this parameter. (For Pittsburgh capacities below 14,000, the optim-
ization problem would be infeasible. At those levels, capacity in the system would be
insufficient to meet demand for 39,000 units.) In the table, the following changes
appear in the optimal schedule.

† As Pittsburgh’s capacity increases above 14,000, total costs drop, and more
shipments occur on the PA route.

† When Pittsburgh’s capacity reaches 18,000, shipments along PA level off at
8000. Beyond that capacity level, the solution uses the PC route.

† The optimal total cost drops as Pittsburgh’s capacity increases to 20,000.
Beyond that level, the optimal schedule stabilizes, and total cost remains at
$12,420.

Thus, if we can find a way to increase the capacity at Pittsburgh, we should be inter-
ested in an increase up to a level of 20,000 from the base-case level of 15,000. By also
investigating the cost of increasing capacity, we can quantify the net benefits of expan-
sion. If there are incremental costs associated with expansion to capacities beyond
20,000, such costs are not worth incurring because there is no benefit (i.e., no
reduction in total cost) when capacity exceeds that level. With this kind of information,
we can determine whether a proposed initiative to expand capacity would make econ-
omic sense.

Suppose, for example, that the Pittsburgh warehouse contained some excess space
that we could begin to use for just the cost of utilities. Furthermore, suppose this space
corresponded to additional capacity of 3000 units and cost $800 to operate. Would it
be economically advantageous to use the space? From the Parameter Analysis Report
we learn that by adding 3000 units of capacity, and operating with a capacity of 18,000
at Pittsburgh, distribution costs would drop to $12,960, a saving of $870 from the base
case. This more than offsets the incremental cost of utilities, making the use of the
space economically attractive.

The marginal value of additional capacity is defined as the change in the objective
function due to a unit increase in the capacity available (in this instance, an increase
of one in the value of Pittsburgh’s capacity). Starting with the base case, we can cal-
culate this marginal value by changing the capacity from 15,000 to 15,001, re-solving
the problem and noting the change in the objective function: Total cost drops to
$13,829.71, a decrease of $0.29.

To pursue this last point, we examine the column labeled Change in Figure 4.6.
Entries in this column equal the marginal value of Pittsburgh’s capacity. For example,
the first entry, in cell C3, corresponds to the ratio of the cost change (14,120–13,830)
to the capacity change (15,000–14,000), or –0.29. As the table shows, the marginal
value starts out at $0.29, drops to $0.27, and eventually levels off at zero. Because the
table is built with increments of 1000, we get at least a coarse picture of how the
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marginal value behaves. To refine this picture, we would have to create a Parameter
Analysis Report with increments smaller than 1000.

As Pittsburgh’s capacity increases, the marginal value stays level for a while, then
drops, stays level at the new value for a while, then drops again. This pattern is an
instance of the economic principle known as diminishing marginal returns: If some-
one were to offer us more and more of a scarce resource, its value would eventually
decline. In this case, the scarce resource (binding constraint) is Pittsburgh’s capacity.
Limited capacity at Pittsburgh prevents us from achieving an even lower total cost; that
is what makes Pittsburgh’s capacity economically scarce.

Starting from the base case—15,000 hours—we should be willing to pay up to
$0.29 for each additional unit of capacity at the Pittsburgh plant. This value is also
called the shadow price. In economic terms, the shadow price is the break-even
price at which it would be attractive to acquire more of a scarce resource. In other
words, imagine that someone were to offer us additional capacity at Pittsburgh
(e.g., if we could lease some automated equipment). We can improve total cost at
the margin by acquiring the additional capacity, as long as its price is less than
$0.29 per unit. In our example of opening up additional space in the warehouse, the
cost of the addition was only $800/3000 ¼ $0.26. This figure is less than the
shadow price, indicating that it would be economically attractive to use the space.

Figure 4.6 shows that the marginal value of a scarce resource remains constant in
some neighborhood around the base-case value. In this example, the $0.29 shadow
price holds for additional capacity up to 18,000 units; then it drops to $0.27.
Beyond a capacity of 20,000 units, the shadow price remains at zero. In effect,
additional capacity beyond 20,000 units has no incremental value.

A distinct pattern appears in sensitivity tables when we vary the amount of a
scarce capacity. The marginal value of capacity remains constant over some interval
of increase or decrease. Within this interval, some of the decision variables change lin-
early with the change in capacity, while other decision variables may stay the same.
There is no interval, however, in which all the decision variables remain the same,
as is the case when we vary an objective function coefficient. Thus, it is the shadow
price—not the set of decision variables—that is insensitive to changes in the
amount of a scarce capacity in some interval around the base case. Beyond that
range, the story is different. If someone were to continually give us more of a
scarce resource, its value would drop and eventually fall to zero. In the case of our
transportation example, we can see in Figure 4.6 that the value of additional capacity
at Pittsburgh drops to zero at a capacity level of about 21,000.

4.2. PARAMETER ANALYSIS IN THE ALLOCATION
EXAMPLE

As a further illustration of the Parameter Analysis Report, let’s revisit Example 2.1 of
Chapter 2 (Brown Furniture Company) and the model that finds the profit-maximizing
product mix among chairs, desks, and tables. We encountered the optimal solution in
Figure 2.6, which is reproduced in Figure 4.7. The optimal product mix is made up of
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desks and tables, with no chairs; and the tight constraints are assembly and machining
hours. The optimal total profit contribution in the base case is $4880.

Suppose that we are using the allocation model as a planning tool and that we wish
to explore a change in the price of chairs. This price may still be subject to revision,
pending more information about the market, and we want to study the impact of a
price change, which translates into a change in the profit contribution of chairs. For
the time being, we’ll assume that if we vary the price, there will be no effect on the
demand potential for chairs. To explore the effect of a price change, we follow the
steps introduced in the previous section.

First, we designate a cell for the sensitivity information, in this case cell H8. We
enter the formula =PsiOptParam(15,35), anticipating that we’ll want to investi-
gate the range of profit contributions from $15 to $35 per unit. We also enter a refer-
ence to H8 in cell B8. Next, we go to the drop-down menu for Reports on the RSP tab
and select Optimization Q Parameter Analysis. In the top portion of the Multiple
Optimizations Report window, we select the objective function and variables in the
model, placing the objective function cell (E8) at the top of the list. Next, we select
H8 as the parameter cell, being careful to select it from the Allocation worksheet if
other worksheets appear on the list (because of the fact that they also contain the
PsiOptParam function). Then, by selecting 21 Major Axis Points, as shown in
Figure 4.8, we can examine the effects on a grid with $1 increments. The report,
with some reformatting, is tabulated in Figure 4.9.

The first column of the table gives the values of the parameter (profit contribution
for chairs) that we varied. The second column lists the optimal value of the objective
function in each case and the third column calculates the rate of change in the objective
function per unit change in the parameter. These three columns are, again, the standard
part of the report. The last three columns in Figure 4.9 give the optimal values of the
three decision variables corresponding to each choice of the input parameter.

Figure 4.7. Optimal solution to Example 2.1.
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The Parameter Analysis Report shows how the optimal profit and the optimal pro-
duct mix both change as the profit contribution for chairs increases. For the selected
range of profit contributions ($15-$35), we see three distinct profiles. For values up
to $21, the base case solution prevails, but above $21, the optimal mix changes.

† Chairs stay at zero until the unit profit on chairs rises to $21; then chairs enter
the optimal mix at a quantity of about 15.

† When the unit profit reaches $32, the number of chairs in the optimal mix
increases to 160. At this stage, and beyond, the optimal product mix is made
up entirely of chairs.

† Desks are not affected until the unit profit on chairs rises to $21; then the
optimal number of desks drops from 160 to 0.

† Tables stay level at 120 until the unit profit on chairs rises to $21; then the opti-
mal number of tables increases to about 326. When the unit profit on chairs
rises to $32, the optimal number of tables drops to 0.

† The optimal total profit remains unchanged until the unit profit on chairs rises
to $21; then it increases at a rate that reflects the number of chairs in the
product mix.

Figure 4.8. Selections in the Multiple Optimizations Report.
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From this information, we can conclude that the optimal solution is insensitive
to changes in the unit profit contribution of chairs, up to about $21. (Because we
are operating with a grid of $1, we do not have visibility into what might happen at
intermediate values.) Beyond that point, however, the profit on chairs would
become sufficiently attractive that we would want to include chairs in the mix. In
effect, chairs (and additional tables) substitute for desks when the profit contribution
of chairs reaches $21. Subsequently, when the profit contribution reaches $32,
additional chairs also substitute for tables. Thus, if we decide to alter the price for
chairs, we can anticipate the impact on the optimal product mix from the information
in the Parameter Analysis Report.

Again, the table illustrates some general qualitative patterns. First, when we
improve the objective function coefficient of one variable, the amount of that variable
in the optimal solution will either increase or stay the same; it cannot drop. (The effect
on other variables, however, may not follow an obvious direction: The optimal number
of tables first increases and then later decreases as the price of chairs rises.) Second, the
optimal value of the objective function either stays the same or improves.

Now let’s restore the model (by changing B8 back to 16) and consider one of
the RHS constants for sensitivity analysis instead of an objective function coefficient.
Starting from the base case, suppose we wish to vary the number of machining hours
available from 1200 to 2000 in steps of size 50, or equivalently 17 steps. We select
cell H9 for sensitivity parameters and enter =PsiOptParam(1200,2000). Then
we reference H9 in cell G14, which holds the number of machining hours, and com-
plete the Multiple Optimizations Report, requesting 17 Major Axis Points.

Figure 4.9. Parameter Analysis Report for chair profit contribution.
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The Parameter Analysis Report (see Figure 4.10) shows how the optimal profit
and the optimal decisions both change as the number of machining hours increase.
The columns correspond to the same outputs as in the previous table, except for the
first column, where the rows correspond to the designated input values for machining
capacity. The table reveals the following changes in the optimal product mix.

† Chairs remain out of the product mix until the number of machining hours rises
to about 1500. After that, chairs increase with the number of machining hours.
At around 1850 machining hours, the number of chairs levels off at about 72.4.

† Desks increase as the number of machining hours rises to about 1450; then
desks decrease. At 1850 machining hours, desks drop out of the optimal mix.

† Tables make up the entire product mix until the number of machining hours
rises to about 1350. Then the optimal number of tables first decreases, then
increases, and eventually levels off at about 297.

† The optimal total profit grows as the number of machining hours rises, even-
tually leveling off at $5318.

Therefore, as we increase machining capacity above the base-case value of
1440, we have an incentive to alter the product mix. First, the product mix changes
by swapping desks for tables (but not necessarily at a ratio of 1 :1), then by swapping
chairs and tables for desks, until the entire product mix becomes devoted to chairs and
tables. The qualitative details of the product mix changes are not as important as the
fact that the optimal profit contribution increases with the number of machining hours,
until leveling off at a capacity of about 1850 hours.

Figure 4.10. Parameter Analysis Report for machining hours.

4.2. Parameter Analysis in the Allocation Example 131



We say “about” 1850 hours because we used a coarse grid in the table, and we
cannot observe precisely what machining capacity drives desks completely out of
the product mix. If we wanted a more precise value, we would repeat the analysis
using a step size less than 50.

The marginal value of additional machining hours is defined as the improvement
in the objective function from a unit increase in the number of hours available
(i.e., an increase of one in the right-hand side of the machining hours constraint).
Starting with the base case, we can calculate this marginal value, or shadow price,
by changing the number of machining hours to 1441, re-solving the problem, and
tracking the improvement in the objective function. (It grows to $4882, an improve-
ment of $2.)

In Figure 4.10, column C tracks the shadow price over a broader interval, based
again on a formula added manually to the table as it was originally generated. Entries
in this column represent the change in the optimal objective function value, from the
row above, divided by the change in the input parameter. This ratio describes the mar-
ginal value of machining hours. As the table shows, the marginal value starts out at
$3.50 for a capacity of 1250 machining hours, drops as the number of machining
hours increases, and eventually levels off at zero. Actually, the shadow price appears
to level off at $2.00 and at $1.05 before it eventually drops to zero. However, because
the table is built on increments of 50 hours, we can get only a coarse picture of how this
marginal value behaves.

To get a better picture of the marginal value, we can repeat the analysis, using a
step size of 25. The Parameter Analysis Report is shown in Figure 4.11. The marginal
values are still approximate; however, a clearer picture of the marginal value emerges.
As before, the marginal value lies at $3.50 at around 1200 hours; it falls to $2.00
around 1350 hours, to $1.05 around 1475 hours, and finally to zero around 1850
hours. An even smaller step size would be necessary to be more precise about the
levels at which the marginal value changes.

In linear programs, a distinct pattern in sensitivity analyses typically arises when
we vary the availability of a scarce resource. To repeat, the marginal value of the scarce
resource stays constant over some interval of increase or decrease. Within this interval,
some of the decision variables change linearly with the change in resource availability,
while other decision variables may stay the same. As we acquire more of a scarce
resource, its value eventually drops, exhibiting diminishing marginal returns and ulti-
mately falling to zero. In the case of our allocation problem, the value of additional
machining hours drops to zero at a capacity level around 1850.

For another perspective on this phenomenon, we can construct a graph of optimal
profit as a function of machining capacity. Figure 4.12 shows such a graph, with a dis-
tinctive piecewise linear shape. Machining capacity appears on the horizontal axis,
and optimal profit appears on the vertical axis. The slope of the line in this graph cor-
responds to the shadow price for machining capacity. As the graph indicates, the
shadow price drops in a piecewise fashion as the capacity increases, eventually stabi-
lizing at zero for capacity levels above 1850. As machining capacity increases beyond
this level, the optimal profit levels off at $5318, limited by other constraints in the
model.
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Figure 4.11. Parameter Analysis Report on a refined grid.

Figure 4.12. Optimal profit as a function of machining hours available.
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The Parameter Analysis Report has an option for generating two-way tables in
addition to the one-way tables we have examined thus far. For the two-way table,
we select two parameters and vary them from minimum to maximum, in a specified
step size. In other words, we enter the PsiOptParam function in two places and refer
to those functions in two cells of the model. (The ranges and step sizes need not be
identical.) The report generated by such a run displays only the values of the optimal
objective function.

As an illustration, suppose we want to test the sensitivity of the optimal profit con-
tribution in the allocation example to changes in both the profit contribution of chairs
and the profit contribution of desks. Specifically, we vary the unit contribution of
chairs from 10 to 60 in steps of 10 and the unit contribution of desks from 15 to 30
in steps of 5. When we ask for a two-way table in the Multiple Optimizations
Report window, we check the box for Vary Parameters Independently and then
set the Major Axis Points to 6 and Minor Axis Points to 4 (for this illustration), as
shown in Figure 4.13. The Parameter Analysis Report is shown in Figure 4.14.

Although two-way tables are available, most sensitivity analyses are carried out
for one variable at a time. With a one-at-a-time approach, we can focus on the

Figure 4.13. Multiple Optimizations Report for a two-way analysis.
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implications of a change in a model parameter for the objective function, decision
variables, tightness of constraints, and marginal values. Much of the insight we
can gain from formal analysis derives from these kinds of investigations. The two-
at-a-time capability is computationally similar, but it does not usually provide as
much insight.

4.3. THE SENSITIVITY REPORT AND THE
TRANSPORTATION EXAMPLE

As we’ve seen, the Parameter Analysis Report duplicates for optimization models the
main functionality of the Data Table tool for basic spreadsheet models. The report is
constructed by repeating the optimization run with different parametric values in the
model each time. This transparent logic makes the Parameter Analysis Report a con-
venient and accessible choice for most of the sensitivity analyses we might want to
perform with optimization models. However, Solver provides us with an alternative
perspective.

The Sensitivity Report is available after an optimization run, once the optimal sol-
ution has been found. From the drop-down menu on the Reports icon in the RSP
ribbon, we select Optimization Q Sensitivity. The Sensitivity Report then appears
on a new worksheet, immediately before the model worksheet. The Sensitivity
Report has three sections—one each for the objective function, decision variables,
and constraints. Figure 4.15 shows the Sensitivity Report for the transportation
model in Figure 4.1, after reformatting of some cells.

In the top section, the report records the optimal value of the objective function, as
it appears in cell C18. The report also guesses a suitable name for this quantity.1 In the

Figure 4.14. Parametric Analysis Report for a two-way analysis.

1By default, Solver constructs a name for each cell in this report by looking above it and to its left for text
entries in the original spreadsheet.
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second section, the report reproduces the values of the decision variables in the opti-
mal solution (under Final Value) and the values of the coefficients in the objective
function (under Objective Coefficient). The Allowable Increase and Allowable
Decrease columns show how much we could change any one of the objective function
coefficients without altering the optimal decision variables. For example, the objective
function coefficient for the PA route is $0.36 in the base case, as shown in the first
highlighted row of the Sensitivity Report in Figure 4.15. This unit cost could rise
to $0.38 without having an impact on the optimal shipping schedule. (This limit is
indicated by the allowable increase of 0.02.) In addition, the original value could
drop to $0.27 without having an impact on the optimal shipping schedule. (This
limit is indicated by the allowable decrease of 0.09.) These increases and decreases
from the base case are consistent with the parameter analysis shown in Figure 4.5.

It might be helpful to think about the Sensitivity Report as an “insensitivity
report,” because it mainly provides information about changes for which some
aspect of the base-case solution does not change. Here, for example, the base-case

Figure 4.15. Sensitivity Report for Example 3.1.
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decisions are insensitive to changes in the PA unit cost between $0.27 and $0.38. In
this interval, the base-case schedule remains optimal. Of course, the optimal total
cost will vary with the PA unit cost, because some 5000 units are shipped along the
PA route in the optimal schedule. For example, if the unit cost dropped by $0.04,
the optimal schedule would remain unchanged, but the optimal total cost would
drop by 5000($0.04) ¼ $200.

The Sensitivity Report is more precise but less flexible than the Parameter
Analysis Report. For example, Figure 4.4 provides us with the allowable increase
and decrease, but to a precision of only 0.05. We need to search on a smaller grid,
as in Figure 4.5, to refine our precision; but even in this more detailed report, we
can determine the allowable increase and decrease to a precision of only 0.01. By con-
trast, the Sensitivity Report provides the values exactly. On the other hand, the
Sensitivity Report tells us virtually nothing about what would happen if the PA unit
cost rose above $0.38, whereas the Parameter Analysis Report can provide a good
deal of information.

The entries in the Reduced Cost column of the Sensitivity Report may initially be
displayed as a set of zeros for all variables.2 However, if we display the entries to two
decimal places, we see some nonzero values. For decision variables that are not at their
upper or lower bounds (and here, the only bound for a variable is zero), the reduced
cost is zero. So, for the variable PA, which is positive in the optimal shipping schedule,
the report shows a reduced cost of zero.

The reduced cost is nonzero if the corresponding decision variable lies at its
bound. In this example, that condition means that the route is not used in the optimal
schedule. For the MA route, the reduced cost is $0.28. The interpretation of this value
is as follows. Evidently, the unit cost of the MA route is unattractive at its base-case
value of $0.60, and we might wonder how much more attractive that unit cost
would have to become for the MA route to appear in the optimal solution. The
answer is given by the reduced cost: The unit cost would have to drop by more than
$0.28 before there would be an incentive to ship along the MA route. However, we
already knew that much, from the Allowable Decrease for the MA variable. As this
example shows, the Reduced Cost provides information that can be obtained else-
where, and we need not rely on it.

In the third section, the Sensitivity Report provides the values of the constraint
left-hand sides (under Final Value) and the right-hand-side constants (under
Constraint RH Side), along with the shadow price for each constraint. Here again, it
may be necessary to re-format the column of shadow prices. From the earlier sensi-
tivity analysis for this example, we expect to see a shadow price of $0.29 for
Pittsburgh capacity. The Sensitivity Report shows this value as a negative price
because it follows a convention of quoting the shadow price as the increase in the
objective function induced by a unit increase in the right-hand side constant. An

2The format of these cells corresponds to the format of the corresponding decision cell in the original model.
Thus, depending on how the model was originally formatted, the figures in this report can be misleading,
especially when zeros appear.
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increase in the Pittsburgh capacity would allow the optimal total cost to drop, so the
shadow price is negative.

The Allowable Increase and Allowable Decrease columns show how much we
could change any one of the constraint constants without altering the shadow price.
In the case of Pittsburgh capacity (15,000 in the base case), the information in the
highlighted row of the report’s bottom section indicates that the capacity could increase
by 3000 or decrease by 1000 (i.e., it could vary between 14,000 and 18,000) without
affecting the shadow price of $0.29. Again, this is an “insensitivity” result, and it is
consistent with the information in the Parameter Analysis Report of Figure 4.6.
Recall from our earlier discussions, however, that the optimal values of some decision
variables change with any increase or decrease in the Pittsburgh capacity.

The Sensitivity Report does not offer information about what occurs outside of
the allowable increase and allowable decrease. It is also completely based on one-
at-a-time analysis. That is, the presumption is that only one parameter at a time is
subject to change. No facility exists in the Sensitivity Report to explore the effects
of varying two parameters simultaneously, as in the case of the two-way parameter
analysis shown in Figure 4.14.

The sensitivity analysis for right-hand-side constants is omitted for constraints
that involve a simple lower or upper bound. That is, if the form of the constraint is
Variable � Ceiling or Variable � Floor, then the Sensitivity Report does not include
the constraint. On the other hand, if the same information is incorporated into the
model using the standard SUMPRODUCT constraint form (as in the case of the allo-
cation model) or using the SUM constraint form (as in the case of the transportation
model) then the Sensitivity Report treats the constraint in its usual fashion and pro-
vides ranging analysis.

4.4. THE SENSITIVITY REPORT AND THE
ALLOCATION EXAMPLE

As another illustration of the Sensitivity Report, suppose we ask for it after solving
Example 2.1, the allocation problem discussed earlier. (Refer to Figure 4.7, but
with the original profit coefficient of 16 restored to cell B8.) The Sensitivity Report
is shown in Figure 4.16. In the first section, the report shows the optimal value of
the objective function (total profit) of $4,880. In the second section, the Sensitivity
Report reproduces the optimal solution and tabulates the Allowable Increase and
Allowable Decrease for each objective function coefficient. If we ask how much the
contribution of chairs ($16 in the base case) could vary without altering the optimal
product mix, we can tell from the first Allowable Increase that the contribution
could rise by up to $5 or drop by any amount without altering the optimal mix.
Thus, a price increase of more than $5 would provide an inducement to include
chairs in the product mix. This conclusion could also be drawn from the parameter
analysis in Figure 4.7.

Suppose instead that we ask a similar question about desks: How much could the
profit contribution for desks ($20 in the base case) change, without altering the
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optimal solution? From the Sensitivity Report, in the row for desks, we see that the
allowable range is from $19.52 to $21.00 (from an Allowable Decrease of about
$0.48 to an Allowable Increase of $1.00). Within this interval, the unit profit on
desks does not trigger a change in the optimal mix; the best mix remains 160 desks,
120 tables, and no chairs. However, any change outside this range should be examined
by re-running the model. Also, if the profit on desks were to increase by $0.75, which
lies within the Allowable Increase, the optimal value of the objective function would
necessarily change because the 160 desks in the optimal mix would account for a profit
increase of 160($0.75) ¼ $120.

The example involving the profit on desks reinforces the point that the Sensitivity
Report cannot “see” beyond the Allowable Increase and Allowable Decrease. The
Sensitivity Report tells us nothing about what happens when the profit contribution
for desks rises above $21, whereas that information would be available to us from
the Parameter Analysis Report, provided we specify a suitable range for the input
parameter. Nevertheless, the Sensitivity Report covers all of the decision variables
in one report. If we’re primarily interested in the allowable increases and decreases
around the base case—that is, if we’re looking for “insensitivity” information—
then the Sensitivity Report is the tool of choice. Had we used the Parameter
Analysis Report, we could not have produced information on all three coefficients
simultaneously.

In the third section, the Sensitivity Report provides the shadow price for each con-
straint and the range over which it holds. The Allowable Increase and Allowable
Decrease columns show how much we could change any one of the constraint con-
stants without altering any of the shadow prices. For example, we should recognize

Figure 4.16. Sensitivity Report for Example 2.1.
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the shadow price on Machining time of $2.00 (from Figure 4.11). However, from the
Sensitivity Report, we also know now that this $2.00 value holds up to a capacity
of 1460 hours (an allowable increase of 20). Beyond that, there would be a change
in the shadow price for machining hours. In fact, there would be a change in the
optimal product mix. Once again, we cannot anticipate from Sensitivity Report
exactly what that change might look like, whereas the Parameter Analysis Report
(Figure 4.11) shows that the expanded machining capacity will make it desirable to
add chairs to the product mix.

Thus, the Parameter Analysis Report and the Sensitivity Report provide different
capabilities. A comparison of the two approaches is summarized in Table 4.1.
Generally, the Parameter Analysis Report is more flexible, whereas the Sensitivity
Report is more precise. Although each is suitable for answering particular questions
that arise in sensitivity analyses, it would be reasonable to draw on both capabilities
to build a comprehensive understanding of the model’s solution. One word of warning
must be added. The Sensitivity Report can sometimes be confusing if the model itself
does not follow a disciplined layout. As described in Chapter 2, we advocate a stan-
dardized approach to building linear programming models on spreadsheets. Solver
does permit more flexibility in layout and calculation than our guidelines allow, but
some users find the Sensitivity Report confusing when running nonstandard model
layouts. This problem is less likely to arise with the Parameter Analysis Report.

4.5. DEGENERACY AND ALTERNATIVE OPTIMA

Viewed from the perspective of the Sensitivity Report, each linear programming
solution carries with it an allowable range for the objective function coefficients

Table 4.1. Comparison of the Parameter Analysis and Sensitivity Reports

Parameter Analysis Report Sensitivity Report

Differences

Describes user-determined region Describes “insensitivity” region
Can “see” beyond insensitivity region Limited to “insensitivity” region
Contains standard and tailored content Contains standard content
Table grid may need refinements Allowable increase/decrease are precise
User may require several reports Information is provided simultaneously
Two-at-a-time analysis is available One-at-a-time analysis only
Any parameter on the worksheet Objective coefficients and constraint constants

Similarities

Report is a new worksheet Report is a new worksheet
Column names may need revision Tabulated names may need revision
Entries in report table may need
reformatting

Entries in report table may need reformatting
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and RHS constants. Within this range, some aspect of the optimal solution remains
stable—decision variables in the case of varying objective function coefficients and
shadow prices in the case of varying RHS constants. At the end of such a range,
the stability no longer persists, and some change sets in. In this section, we examine
the endpoints of these ranges as special cases.

First, let’s consider the allowable range for a constraint constant. For a particular
constraint, there is a corresponding range in which the shadow price holds. At the end
of that range, the shadow price is in transition, changing to a different value. At a point
of transition, a different shadow price holds in each direction. This condition is
referred to as a degenerate solution.

Consider our transportation example and its sensitivity report in Figure 4.15.
Suppose we are again interested in the analysis of Pittsburgh capacity, originally at
15,000. From the ranging analysis of Figure 4.15, we find that the shadow price of
$0.29 holds for capacities of 14,000 to 18,000. At a capacity of 18,000, the shadow
price is in transition. We can see from Figure 4.6 that the shadow price is $0.29
below a capacity of 18,000 and $0.27 for capacities above it. Just at 18,000, it
would be correct to say that there are two shadow prices, provided that we also explain
that the 29-cent shadow price holds for capacity levels below 18,000, and a 27-cent
shadow price holds for capacity levels above 18,000. When we take capacity to be
exactly 18,000, however, Solver can display only one of these shadow prices. The
Sensitivity Report could show the shadow price either as $0.29 but with an allowable
increase of zero, or as $0.27 but with an allowable decrease of zero, depending on how
the model is expressed on the worksheet.

To recognize a degenerate solution, we look for an entry of zero among the allow-
able increases and decreases reported in the Constraints section of the Sensitivity
Report. This value indicates that a shadow price is at a point of transition. If none
of these entries is zero, then the solution is said to be a nondegenerate solution,
which means that no shadow price lies at a point of transition in the optimal solution.
The significance of degeneracy is a warning: It alerts us to be cautious when using
shadow prices to help evaluate the economic consequences of altering a constraint
constant. We must be mindful that, in a degenerate solution, the shadow price holds
in only one direction. If we want to know the value of the shadow price just beyond
the point of transition, we can change the corresponding right-hand side by a small
amount and then re-run Solver. In our example, we could set Pittsburgh capacity
equal to 18,001 and re-optimize. The resulting Sensitivity Report reveals a 27-cent
shadow price for the Pittsburgh capacity constraint, along with an Allowable
Decrease of one, as shown in the highlighted row of Figure 4.17.

For a complementary result, suppose we have a problem that leads to a nonde-
generate solution, and we consider ranging analysis for objective function coefficients.
For any particular coefficient, there is a corresponding range in which the optimal
values of the decision variables remain unchanged. At the end of that range, more
than one optimal solution exists. This condition is referred to as alternative optima,
or sometimes multiple optima.

As an example, consider our original transportation model, as displayed in
Figure 4.1. From the ranging analysis of Figure 4.15, we see that the unit cost of the
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PA route can vary from $0.27 to $0.38 without a change in the optimal schedule. At the
38-cent limit of this range, more than one optimal solution exists. To find this solution,
we change the unit cost on the PA route to 0.38 and re-run Solver. We find that the
optimal total cost is $13,930, as shown in Figure 4.18. In this solution, the shipments
from Pittsburgh are 3000 to Atlanta, 10,000 to Boston and 2000 to Chicago, with cor-
responding adjustments to the Tucson shipments. However, we can verify that the
original optimal schedule generates this same total cost. In other words, we have
found two different schedules that achieve optimal costs. (In fact, it is possible to show
that any weighted average of the two schedules is also optimal; thus, the number of
distinct optimal schedules is actually infinite.) Solver is able to display only one of
these solutions, depending on how the model is constructed on the spreadsheet.

To recognize the existence of multiple optima, we look for an entry of zero
among the allowable increases and decreases reported in the Decision Variable
Cells section of the Sensitivity Report. If there are no zeros, then the optimal solution
is a unique optimum, and no alternative optima exist. (Strictly speaking, this is true

Figure 4.17. Sensitivity Report for the near-degenerate case.
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only for nondegenerate solutions; when the solution is degenerate, these zeros are
not necessarily indicators of multiple optima.) Otherwise, the optimal solution
displayed on the spreadsheet is one of many alternatives that all achieve the same
objective function value. The significance of multiple optima is an opportunity:
Knowing that there are alternative ways of reaching the optimal value of the objective
function, we might have secondary preferences that we could use as “tiebreakers” in
this situation. However, Solver does not have the capability of displaying multiple
optima, and it is not always obvious how to generate them on the spreadsheet. In
our example, we can at least “trick” Solver into displaying the original optimal
schedule for the case of a 38-cent unit cost on the PA route. If we change the unit
cost on the PA route to 0.37999 and re-run Solver, we obtain the output we desire.
Here, we exploit the fact that this made-up value remains inside the limits of the orig-
inal ranging analysis (as given in Figure 4.15), but it effectively behaves like the
desired parameter of 0.38.

In summary, the Sensitivity Report examines the objective function coefficients
and the RHS constants separately in two tables. Taking each parameter independently,
and permitting it to vary, the report provides information on its allowable range—the
range of values for which the solution remains stable in some way. At the end of these
ranges, indicated by the values of the Allowable Increase and Allowable Decrease,
special circumstances apply. Box 4.1 summarizes the various conditions that can
occur when we start with an optimal solution that is unique and nondegenerate.

Figure 4.18. Solution with multiple optima.
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4.6. PATTERNS IN LINEAR PROGRAMMING
SOLUTIONS

We often hear that the real take-away from a linear programming model is insight,
rather than the actual numbers in the answer, but where exactly do we find that insight?
This section describes one form of insight, which comes from interpreting the quali-
tative pattern in the solution. Stated another way, the optimal solution tells a “story”
about a pattern of economic priorities, and it’s the recognition of those priorities
that provides useful insight. When we know the pattern, we can explain the solution
more convincingly than when we simply transcribe Solver’s output. When we
know the pattern, we can also anticipate answers to some what-if questions without
having to modify the spreadsheet and re-run Solver. In short, the pattern provides a
level of understanding that enhances decision making. Therefore, after we optimize
a linear programming model, we should always try to describe the qualitative pattern
in the optimal solution.

BOX 4.1 Summary of Ranging in Sensitivity Analysis

Allowable ranges for objective function coefficients

In the range from Allowable Increase to Allowable Decrease

† the values of the decision variables remain the same

† the binding constraints remain binding.

At the boundary of the range

† multiple optima occur

† the decision variables are in transition.

Inside the range (but not on its boundary)

† the optimal set of decision variables is unique.

Allowable ranges for right-hand-side constants

In the range from Allowable Increase to Allowable Decrease

† the shadow prices remain the same

† the zero-valued decision variables remain zero.

At the boundary of the range

† degeneracy occurs

† the shadow price is in transition.

Inside the range (but not on its boundary)

† the shadow prices are unique.
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Spotting a pattern involves making observations about both variables and con-
straints. In the optimal solution, we should ask ourselves, which constraints are bind-
ing and which are not? Which variables are positive and which are zero? A structural
scheme describing the pattern is simply a qualitative statement about binding con-
straints and positive variables. However, to make that scheme useful, we translate it
into a computational scheme for the pattern, which ultimately allows us to calculate
the precise values of the decision variables in terms of the model’s parameters. This
computational scheme often allows us to reconstruct the solution in a sequential,
step-by-step fashion. To the untrained observer, the computational scheme seems to
calculate the quantitative solution directly, without Solver’s help. In fact, we are pro-
viding only a retrospective interpretation of the solution, and we need to know that sol-
ution before we can construct the interpretation. Nevertheless, we are not merely
reflecting information in Solver’s output; we are looking for an economic imperative
at the heart of the situation depicted in the model. When we can find that pattern and
communicate it, then we have gained some insight.

The examples in each of the subsections illustrate how to describe a pattern with-
out using numbers. The discussion also introduces two tests that determine whether
the pattern has been identified. We’ll see how knowledge of the pattern enables us
to anticipate the ranges over which shadow prices hold. We’ll also see how to antici-
pate the ranges over which reduced costs hold. In effect, this material amounts to an
explanation of information in the Sensitivity Report, although we can go beyond
the report. Ultimately, the ability to recognize patterns allows us to appreciate and
interpret solutions to linear programs in a comprehensive fashion, but it is a rather
different skill than using the Sensitivity Report. The identification of patterns
allows us to look beyond the specific quantitative data of a problem and find a general
way of thinking about the solution. Unfortunately, there is no recipe for finding
patterns—just some guidelines. The lack of a recipe can make the process challenging,
even for people who can build linear programming models quite easily. Therefore, our
discussion proceeds with a set of examples, each of which illustrates different aspects
of working with patterns.

4.6.1. The Transportation Model
Let’s return to the transportation example of Figure 4.1. The first thing to notice is that
we need to use only six of the available routes in order to optimize costs. As Solver’s
solution reveals, the best routes to use are MC, PA, PB, TA, TC, and TD. Stated another
way, the solution tells us that we can ignore the other decision variables.

The solution also tells us that all the demand constraints are binding. This
makes intuitive sense because unit costs are positive on all routes, and so there is
no incentive to ship more than demand to any destination. A consequence of meeting
all demands exactly is that at least one of the supply capacities must be underutilized
in the optimal solution because there is a total demand of 39,000 units compared to a
total capacity of 40,000. In general, there is no way to anticipate how many sources
will be fully utilized and how many will be underutilized, so one useful part of
the optimal pattern is the identification of critical sources—those that are fully utilized.
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The critical sources correspond to binding supply constraints in the model. In the
solution, the Minnesota and Pittsburgh plants are at capacity, and Tucson capacity
is underutilized. The decision variables associated with Tucson as a source are not
determined by the capacity at Tucson; instead, they are determined by other constraints
in the model.

In summary, the structural scheme for the pattern is as follows.

† Demands at all five warehouses are binding.

† Capacities at Minnesota and Pittsburgh are binding.

† The desired routes are MC, PA, PB, TA, TC, and TD.

As we shall see, this structural scheme specifies the optimal solution uniquely.
In the optimal schedule, some demands are met entirely from a unique source:

Demand at Boston is entirely met from Pittsburgh, and demand at Denver is entirely
met from Tucson. In a sense, these are high priority scheduling allocations, and we can
think of them as if they are made first. There is also a symmetric feature: Supply from
Minneapolis all goes to Chicago. Allocating capacity to a unique destination also
marks a high priority allocation.

It is tempting to look for a reason why these routes get high priority. At first
glance, we might be inclined to think that these are the cheapest routes. For example,
Boston’s cheapest inbound route is certainly the one from Pittsburgh. However, things
get a little more complicated after that. The TD route is not the cheapest inbound route
for Denver. Luckily, we don’t need to have a reason; our task here is merely to interpret
the result.

Once we assign the high priority shipments, we can effectively ignore the supply
at the Minneapolis plant and the demands at the Boston and Denver warehouses. We
then proceed to a second priority level, where we are left with a reduced problem con-
taining two sources and two destinations. Now, the list of best routes tells us that the
remaining supply at Pittsburgh must go to Atlanta; therefore, PA is a high priority allo-
cation in the reduced problem. Similarly, the remaining demand at Chicago is entirely
met from Tucson, so the TC route becomes a high priority allocation as well.

Having made the second-priority assignments, we can ignore the supply at
Pittsburgh and the demand at Chicago. We are left with a net demand at Atlanta
and unallocated supply at Tucson. Thus the last step, at the third priority level, is to
meet the remaining demand with a shipment along route TA.

In general, the solution of a transportation problem can be described with the
following generic computational scheme.

† Identify a high priority demand—one that is met from a unique source—and
allocate its entire demand to this route. Then remove that destination from
consideration.

† Identify a high priority source—one that supplies a single destination—and
allocate its remaining supply to this route. Then remove that source from
consideration.
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† Repeat the previous two steps using remaining demands and remaining
supplies each time until all shipments are accounted for.

The specific steps in the computational scheme for our example are the following.

1. Ship as much as possible on routes PB, TD, and MC.

2. At the second priority level, ship as much as possible on routes PA and TC.

3. At the third priority level, ship as much as possible on route TA.

At each allocation, “as much as possible” is dictated by the minimum of capacity
and demand. The following list summarizes computational scheme in priority order.

Route Priority Shipment

PB 1 10,000
TD 1 9000
MC 1 10,000
PA 2 5000
TC 2 2000
TA 3 3000

This retrospective calculation of the solution has two important features: It is complete
(i.e., it specifies the entire shipment schedule) and it is unambiguous (i.e., the calcu-
lation leads to just one schedule). Anyone who constructs the solution using these
steps will reach the same result.

The structural scheme given earlier characterizes the optimal solution without
explicitly using a number. By describing the optimal solution without relying on
the specific parameters in the problem, it portrays a qualitative pattern in the solution.
Then, by converting that pattern to a computational scheme, we translate the pattern
into a list of economic priorities. This list enables us to establish the values of the
decision variables one at a time.

This pattern is important because it holds not just for the specific problem that we
solved, but also for other problems that are very similar but with some of the para-
meters slightly altered. For example, suppose that demand at Boston were raised to
10,500. We could verify that the same pattern applies. The revised details of imple-
menting the same pattern are shown in the following list.

Route Priority Shipment Change D Cost

PB 1 10,500 500 150
TD 1 9000 0 0
MC 1 10,000 0 0
PA 2 4500 –500 –180
TC 2 2000 0 0
TA 3 3500 500 325
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Summing the cost changes in the last column, we find that an increase of 500 in
demand at Boston leads to an increase in total cost of $295. In effect, we have derived
the shadow price because the per-unit change in total cost would be $295/500 ¼
$0.59. This value agrees with the shadow price for Boston demand given in the
Sensitivity Report (Figure 4.15).

In tracing the changes, we can also anticipate the range over which the shadow
price continues to hold. As we add units to the demand at Boston, the pattern
induces us to make the same incremental adjustments in shipment quantities we
traced in the table above. The pattern of shipments will be preserved, and the list
of best routes will remain unaltered, as long as we add no more than 1000 units
to the demand at Boston. At that level, the excess capacity in the system disappears,
and the pattern no longer holds. In the other direction, as demand at Boston drops,
the pattern indicates that we should reduce shipments on PB and TA, while increas-
ing PA. After we have reallocated 3000 units in that way, the allocation on route TA
disappears. At that point, we have to shift to a new pattern to accommodate a further
drop in Boston demand. The limits found here—an increase of 1000 and a decrease
of 3000—are precisely the limits on the Sensitivity Report for Boston demand.
Thus, using the optimal pattern, we are able to explain the shadow price and its
allowable range.

More generally, we can alter the original problem in several ways at once.
Suppose demands at Atlanta, Boston, and Chicago are each raised by 100 simul-
taneously. What will the optimal schedule look like? In qualitative terms, we already
know from the computational scheme. The qualitative pattern allows us to write down
the optimal solution to the revised problem without re-running Solver, but rather by
using the priority list and adjusting the shipment quantities for the altered demands.
The following table summarizes the calculations.

Route Priority Shipment Change D Cost

PB 1 10,100 100 30
TD 1 9000 0 0
MC 1 10,000 0 0
PA 2 4900 –100 –36
TC 2 2100 100 55
TA 3 3200 200 130

Tracing the cost implications, we find that the 100-unit increases in the three
demands combine to increase the optimal total cost by $179. This figure can be
obtained by adding the three corresponding shadow prices (and multiplying by the
size of the 100-unit increase), but the pattern allows us to take one additional step.
We can also determine that the $179 figure holds for an increase (in the combined
demand levels) of 1000, which is the level at which the excess supply disappears,
or for a decrease of 1500, which is the level at which the shipment along TA runs
out. Thus, we can find the allowable range for a shadow price corresponding to sim-
ultaneous changes in several constraint constants.
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4.6.2. The Product Portfolio Model
The product portfolio problem asks which products a firm ought to be making. If con-
tractual constraints force the firm to enter certain markets, then the question is which
products to make in quantities beyond the required minimum. Consider Grocery
Distributors (GD), a company that distributes 15 different vegetables to grocery
stores. GD’s vegetables come in standard cardboard cartons that each take up 1.25
cubic feet in the warehouse. The company replenishes its supply of frozen foods at
the start of each week and rarely has any inventory remaining at the week’s end. An
entire week’s supply of frozen vegetables arrives each Monday morning at the ware-
house, which can hold up to 18,000 cubic feet of product. In addition, GD’s supplier
extends a line of credit amounting to $30,000. That is, GD is permitted to purchase up
to $30,000 worth of product each Monday.

GD can predict sales for each of its 15 products in the coming week. This forecast
is expressed in terms of a minimum and maximum anticipated sales quantity. The
minimum quantity is based on a contractual agreement that GD has made with a
small number of retail grocery chains; the maximum quantity represents an estimate
of the sales potential in the upcoming week. The cost and selling price per carton
for each product are known. The given information is tabulated as part of Figure 4.19.

GD solves the linear programming model shown in Figure 4.19. The model’s
objective is maximizing profit for the coming week. Sales for each product are con-
strained by a minimum and maximum quantity. These are entered as lower and
upper bound constraints. In addition, aggregate constraints on purchase expenditures
and warehouse space make up the model. The model specification is as follows.

Objective: R11 (maximize)
Variables: C9:Q9
Constraints: R14:R15 � T14:T15
Bounds: C9:Q9 � C6:Q6 (lower bounds)

C9:Q9 � C7:Q7 (upper bounds)

Figure 4.19 also displays the solution obtained by running Solver. When we look at the
constraints of the problem, we see that the credit limit is binding, but the space

Figure 4.19. Optimal solution for GD.
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constraint is not. That means space consumption is dictated by other constraints in the
problem. When we look at demand constraints, we see that creamed corn, black-eyed
peas, carrots, and green beans are purchased at their maximum demands, whereas all
other products are purchased at their minimum, except for lima beans. This obser-
vation constitutes a first cut at the structural scheme in the optimal solution.

The pattern thus consists of a set of products produced at their minimum levels,
another set produced at their maximum levels, and the information that the credit limit
is binding. We can translate this pattern into a priority list by treating the products pro-
duced at their maximum levels as high priority products. The products produced
exactly at their minimum levels are the low priority products. Lima beans are in a
unique role. We can think of the solution as assigning the high priority products to
their maximum levels and the low priority products to their minimum levels. This
brings us to the only remaining positive variable—the lima beans. We assign their
quantity so that the credit limit becomes binding.

We can go one step further and recognize from the pattern that we are actually
solving a simpler problem than the original: Produce the highest possible value
from the 15 products under a tight credit limit. To solve this problem, we can use a
common-sense rule: Pursue the products in the order of highest value-to-cost ratio.
The only other consideration is satisfying the given minimum quantities. Therefore,
we can calculate the solution as follows.

1. Purchase enough of each product to satisfy its minimum quantity.

2. Rank the products from highest to lowest ratio of profit-to-cost.

3. For the highest-ranking product, raise the purchase quantity toward its maxi-
mum quantity. Two things can happen: Either we increase the purchase quan-
tity so that the maximum is reached (in which case we go to the next product),
or else we use up the credit limit (in which case we stop).

The ranking mechanism prioritizes the products and defines the computational
scheme for the pattern. Using these priorities, we essentially partition the set of pro-
ducts into three groups: a set of high priority products, produced at their maximum
levels; a set of low priority products, produced at their minimum levels; and a special
product, produced at a level between its minimum and its maximum. (The special pro-
duct is the one we are adding to the purchase plan in our computational scheme when
we hit the credit limit.) This procedure is complete and unambiguous, and it describes
the optimal solution without explicitly using a number. At first, the pattern was again
just a collection of positive decision variables and binding constraints. But we were
able to convert that pattern into a prioritized list of allocations—a computational
scheme—that established the values of the decision variables one at a time.
Table 4.2 summarizes the computational scheme. It ranks the products by profit-
to-cost ratio and indicates which products are purchased at either their maximum or
minimum quantity.

Actually, Solver’s solution merely distinguished the three priority classes; it did
not actually reveal the value-to-cost ratio rule explicitly. That insight could come from
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reviewing the make-up of the priority classes, or from some outside knowledge about
how single-constraint problems are optimized. But this brings up an important point.
Usually, Solver does not reveal the economic reason for why a variable is treated as
having high priority. In general, it is not always necessary (or even possible) to
know why an allocation receives high priority—it is important to know only that it
does.

As in the transportation example, we can alter the base-case model slightly and
follow the consequences for the optimal purchase plan. For example, if we raise the
credit limit, the only change at the margin will be the purchase of additional cartons
of the medium priority product. Thus, the marginal value of raising the credit limit
is equivalent to the incremental profit per dollar of purchase cost for the medium pri-
ority product, or (3.13 – 2.80)/2.80 ¼ 0.1179. Furthermore, we can easily compute
the range over which this shadow price continues to hold. At the margin, we are
adding to the 2150 cartons of lima beans, where each carton adds $0.1179 of profit
per dollar of cost. As we expand the credit limit, the optimal solution will call for
an increasing quantity of lima beans, until it reaches its maximum demand of 3300
cartons. Those extra (3300 – 2150) ¼ 1150 cartons consume an extra $2.80 each of
an expanded credit limit, thus reaching the maximum demand at an additional
2.80(1150) ¼ $3220 of expansion in the credit limit. This is exactly the allowable
increase for the credit limit constraint. For completeness, we should also check on
the other nonbinding constraint, because we ignored the space constraint in the pattern.
The extra 1150 cartons of lima beans consume additional space of (1.25)1150 ¼
1437.5 square feet of space. But this amount can be accommodated by the unused

Table 4.2. GD’s Products, Arranged by Priority

Product Priority Quantity Profit/cost

Creamed corn 1 2000 0.127 (max.)
Black-eyed peas 2 900 0.125 (max.)
Carrots 3 1200 0.123 (max.)
Green beans 3 3200 0.123 (max.)
Lima beans 4 2150 0.118 (spec.)
Green peas 5 750 0.102 (min.)
Cauliflower 6 100 0.098 (min.)
Spinach 7 400 0.081 (min.)
Squash 8 100 0.079 (min.)
Broccoli 9 400 0.079 (min.)
Succotash 10 200 0.078 (min.)
Brussel sprouts 11 100 0.060 (min.)
Whipped potatoes 12 300 0.056 (min.)
Okra 13 150 –0.064 (min.)
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space of 3063 square feet in the original optimal solution. This calculation confirms
that lima bean demand reaches its maximum level at the allowable increase of
$3220 in the credit limit.

Suppose we increase the amount of a low priority product in the purchase plan.
Then, following the optimal pattern (Steps 1–3 above), we would have to purchase
less of the medium priority product. Consider the purchase of more squash than the
100-carton minimum. Each additional carton costs $2.50, substituting for about
2.50/2.80 ¼ 0.893 cartons of lima beans in the credit limit constraint. The net
effect on profit is as follows.

† Add a carton of squash (increase profit by $0.20).

† Remove 0.893 cartons of lima beans (decrease profit by $0.2946).

† Therefore, net cost ¼ $0.0946.

Thus, each carton of squash we force into the purchase plan (above the minimum of
100) will reduce profits by 9.46 cents, which corresponds to the reduced cost for
squash. Over what range will this figure hold? From the optimal pattern, we see that
we can continue to swap squash for lima beans only until the squash rises to its maxi-
mum demand of 500 cartons, or until lima beans drop to their minimum demand of
500 or until the excess space is consumed, whichever occurs first. The maximum
demand for squash is the tightest of these limits; thus, the reduced cost holds for
400 additional cartons of squash above its minimum demand, a figure that is not
directly accessible on the Sensitivity Report.

Comparing the analysis of GD’s problem with the transportation problem con-
sidered earlier, we see that the optimal pattern, when translated into a computational
scheme, is complete and unambiguous in both cases. We can also use the pattern to
determine shadow prices on binding constraints and the ranges over which these
values continue to hold; similarly, we can use the pattern to derive reduced costs
and their ranges as well. A specific feature of GD’s model is the focus on one particular
bottleneck constraint. This helps us understand the role of a binding constraint when
we interpret a pattern; however, many problems have more than one binding
constraint.

4.6.3. The Investment Model
Next, let’s revisit Example 3.5, the network model for multiperiod investment. The
optimal solution is reproduced in Figure 4.20. Because it is a network, all the con-
straints are binding. Furthermore, six variables are positive in the optimal solution.
Therefore, the structural scheme for the pattern is to take every constraint as binding
and rely on the following list of variables: I0, A5, B1, B3, B5, and D1. The solution
tells us to ignore the other variables.

How can we use the constraints to dictate the values of the nonzero variables? One
helpful step is to recreate the network diagram, using just the variables known to be
part of the solution. Figure 4.21 shows this version of the network diagram.

152 Chapter 4 Sensitivity Analysis in Linear Programs



If we think of the cash outflows in the last four years of the model as being met by
particular investments, it follows that the last cash flow is met by either A7 or D1.
These are the only investments that mature in year 7, but the structural scheme tells
us to ignore A7. From Figure 4.21, we can see that the size of D1 must exactly
cover the required outflow in year 7. Similarly, the candidates to cover the year 6
cash outflow are A6, B5, and C4. Of these, only B5 is nonzero, so B5 covers the
required outflow in year 6. The use of B5 also adds to the required outflow in year
4. For the required outflow in year 5, the only nonzero candidate is A5, which also
adds to the required outflow in year 4. The combined year 4 outflows must be covered
by B3, which in turn imposes a required outflow in year 2, to be covered by B1.
Table 4.3 summarizes the calculations, working backward from year 7.

Working down this list, the investment in D1 is determined by the requirement in
year 7. The size of B5 is determined by the requirement in year 6, and similarly, the
size of A5 is determined by the requirement in year 5. These latter two investments
and the given outflow in year 4 together determine the investment in B3. (For that
reason, we need to know the size of B5 and A5 before we can calculate the size of

Figure 4.20. Optimal solution to Example 3.5.

Figure 4.21. Network model corresponding to Figure 4.21.
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B3.) The size of B3, in turn, dictates the investment in B1. Finally, the sizes of B1 and
D1 determine how much money must be invested initially.

Once again, this description of the solution is complete (specifies the entire invest-
ment schedule) and unambiguous (leads to just one schedule). The binding constraints
and the positive decision variables, as displayed in Figure 4.21, describe a compu-
tational scheme for calculating the values of the decision variables one at a time, as
if following a priority list.

As in the other examples, we can obtain shadow prices by incrementing one of the
constraint constants and repeating the process. For example, if the last outflow changes
to $31,000 then, following the pattern, we know that the only change will be an
increase in D1, raising the initial investment. In particular, for an increased outflow
of $1000, D1 would have to be augmented by 1000/1.65 (because it returns 65 per-
cent) or $606.06. Thus, the shadow price on the last constraint is 0.606, as can be
verified by obtaining the Sensitivity Report for the base-case optimization run. To
determine the range over which this shadow price holds, we must calculate when
some nonbinding constraint becomes tight. For this purpose, the only nonbinding con-
straints we need to worry about are the nonnegativity constraints on the variables,
because each of the formal constraints in the model is an equality constraint already.
The shadow price on the last constraint therefore holds for any increase in the size of
the last outflow.

4.6.4. The Allocation Model
In the examples discussed thus far, the pattern led us to a way of determining the vari-
ables one at a time, in sequence. After one variable in this sequence was determined,
we had enough information to determine the next one, and we could continue until all
of the positive variables were determined. Not all solutions lead to this sequential list-
ing, however. As an example, let’s revisit the allocation model, shown in Figure 4.7.

When we ignore the zero-valued variables and the nonbinding constraints, we are
left with a structural scheme consisting of two binding constraints (for assembly and
machining capacity) and two positive variables (desks and tables). There is only one
way that a product mix of desks and tables can be chosen to precisely consume all
assembly and machining capacity. To find that mix, we must solve the following

Table 4.3. Computational Scheme for the Investment Model

Year Outflow Met by Rate Inflow at year

7 30,000 D1 65% 18,182 at 1
6 28,000 B5 14% 24,561 at 4
5 26,000 A5 6% 24,528 at 4
4 73,089 B3 14% 64,114 at 2
3 0
2 64,114 B1 14% 56,240 at 1
1 74,422 I0 –

154 Chapter 4 Sensitivity Analysis in Linear Programs



two equations in two unknowns.

8Dþ 6T ¼ 2000

6Dþ 4T ¼ 1440

The unique solution to the two equations is D ¼ 160 and T ¼ 120, which is com-
plete and unambiguous for the model. Thus, in this example, we cannot create a pri-
ority list for calculating the variables one at a time. Instead, our computational scheme
amounts to the solution of a pair of equations, allowing us to compute the values of the
two positive variables simultaneously.

Because this is not a difficult system to solve for specific values of D and T, we can
also solve it parametrically. Let A and M denote the assembly and machining
capacities, respectively. Then the solution is

D ¼ (3M � 2A)=2

T ¼ (3A� 4M)=2

This form allows us to evaluate shadow prices easily. For example, if we increase M by
a unit amount, D increases by 1.5, T decreases by 2, and the objective function
increases by

DProfit ¼ 20Dþ 14T ¼ 20(1:5)þ 14(�2) ¼ 30� 28 ¼ 2

We recognize the $2 shadow price from earlier analysis (Figure 4.16).
We can also use the parametric form to derive the allowable range. Again,

suppose we increase M. From the parametric solution, we see that D will increase,
but T will drop. The combination also increases the consumption of fabrication
hours and wood supply. The pattern will last until T drops to zero, fabrication becomes
binding or wood becomes binding, whichever occurs first. It turns out that the first
change in the pattern comes from wood. Recall that the wood constraint is

40Dþ 25T � 9600

Using the parametric solution in our pattern, this expression becomes

40(3M � 2A)=2þ 25(3A� 4M)=2 ¼ 10M � 2:5A � 9600

or, with A ¼ 2000
10M � 14,600

Therefore, the pattern holds until M ¼1460, which corresponds to an allowable
increase of 20.

4.6.5. The Refinery Model
To repeat the main idea: When we specify the structural scheme for a pattern in the
optimal solution, we focus on the decision variables that are positive and the con-
straints that are binding. In effect, we ignore zero-valued variables and nonbinding
constraints. As a final illustration, we revisit the refinery model of Example 3.6 for

4.6. Patterns in Linear Programming Solutions 155



Delta Oil. The optimal solution is reproduced in Figure 4.22. Recall that the dimen-
sions for the variables in this model are thousands of barrels per day.

In the solution, all of the decision variables are positive, so the computational
scheme must determine each decision variable. When we look for binding constraints,
we find the balance equations, which define relationships among the decision vari-
ables, along with four others

† Cracker capacity (at 20,000)

† Reg sales (at 16,000)

† Reg blend quality (at its floor of 50 percent Cat)

† Prem blend quality (at its floor of 75 percent Cat).

In the computational scheme, these four binding constraints, together with the
definitional relationships in the balance equations, dictate the entire optimal solution.
We start with the cracker. Because the cracker is at its capacity limit, this means
Feed ¼ 20,000. Furthermore, the output of the cracker occurs in fixed proportions,
so it follows that Cat ¼ 12,800 and High ¼ 8000.

Next, we can use the fact that regular gasoline sells at its market limit, together
with the fact that it is blended at the minimum concentration of catalytic, to deduce that

BR ¼ 50% of 16,000 ¼ 8000

CR ¼ BR ¼ 8000

Figure 4.22. Spreadsheet model for Example 3.6.
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Now that we know Cat and CR, it follows from material balance considerations that
CP ¼ 4800.

Next, we use the fact that premium gasoline is blended at the minimum concen-
tration of catalytic, to deduce that

Prem ¼ 4800=(0:75) ¼ 6400

From material balance considerations, we have

BP ¼ Prem� CP ¼ 6400� 4800 ¼ 1600

We now know the allocation of the distillate blend, so

Blend ¼ BRþ BP ¼ 8000þ 1600 ¼ 9600

Dist ¼ Blend þ Feed ¼ 9600þ 20,000 ¼ 29,600

This calculation brings us back to the output of the tower, which we know is
60 percent distillate and 40 percent low-end by-products, yielding one last set of cal-
culations

Crude ¼ Dist=0:6 ¼ 29,600=0:6 ¼ 49,333

Low ¼ 0:4(Crude) ¼ 19,733

Thus, the optimal pattern calls for production that fully utilizes cracker capacity and
fully exploits sales potential for regular gasoline, while meeting minimum quality
levels in the blending of regular and premium gasolines. These qualitative constraints
represent the economic drivers that dictate the entire optimal solution.

Table 4.4. Computational Scheme for the Delta Oil Model

Base New
Variable case case Change

Feed 20,000 20,000
Cat 12,800 13,800 1000
High 8000 8000
BR 8000 8000
CR 8000 8000
CP 4800 5800 1000
Prem 6400 7733 1333
BP 1600 1933 333
Blend 9600 9933 333
Dist 29,600 29,933 333
Crude 49,333 49,889 556
Low 19,733 19,956 222
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As we pointed out in Chapter 3, catalytic is a scarce resource at Delta Oil. If
more catalytic could be produced, Delta would be able to increase its profits. To
consider a specific scenario, suppose that a technological alteration of the cracker
could produce 1000 more barrels of catalytic without affecting the output of high-
end by-products. (In effect, this alteration modifies the original ratio of catalytic
output to feedstock input.) The following lists show the implications for the vari-
ables in the model. The base-case values come from the calculations illustrated
above; the new-case values in Table 4.4 are derived in a similar sequence, starting
with the fact that cracker capacity is fully utilized at 20,000 barrels and regular sales
are at the 16,000-barrel limit.

The economic implications follow from the objective function. Taking the vari-
ables that have nonzero coefficients in the objective function and evaluating the
impact of their changed values, we obtain

Profit ¼ 55(Prem)þ 36(Low)� 33(Crude)

or

Profit ¼ 55(1333)þ 36(222)� 33(556) ¼ 63,000

Thus, the alteration in cracker output could produce additional profits of $63,000 if
the production plan were adjusted optimally. On a per-unit basis, each barrel of
catalytic generated this way would produce $63 of additional profit. This figure
provides us with a tangible economic value for catalytic, which is an intermediate
product and which presumably has no market. However, if there were a market for
catalytic, we know that Delta would want to buy more catalytic at any price below
$63 per barrel.

These calculations explain the shadow price on the first cracker constraint, which
defines catalytic in the linear programming model. An increase of one on the right-
hand side would be equivalent to setting Cat equal to one more than 40 percent of
the output from the tower. We can interpret this situation as equivalent to obtaining
one additional unit of Cat from an external source, as if it were freely available outside
of our technology. The shadow price tells us how much the objective function would
increase, per unit increase in the right-hand-side constant; and in the Constraints
section of the Sensitivity Report, we can verify that this value is 63, as shown in
Figure 4.23. Thus, our calculation exercise has essentially derived the shadow price.
More importantly, we can see how to use the optimal pattern to trace the economic
consequences of a technological change in the model.

One additional point is instructive. The $63 shadow price on catalytic has an
allowable increase of 1.2. Given the scaling convention in the model, this means
that the shadow price holds for an increase of only 1200 barrels of catalytic. To see
where this figure comes from, create a third column of figures in Table 4.4, starting
with a change in catalytic of 1200. The calculations lead to a Crude value of
50,000, meaning that the tower becomes fully utilized. Beyond that level, a new pat-
tern applies.
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SUMMARY

The primary role of Solver is to find solutions to optimization models. However, some of the
most useful information in the model comes from performing sensitivity analysis after the sol-
ution has been found. The information available through sensitivity analyses of linear programs
is elegant and comprehensive compared to what we find in other optimization techniques. In that
sense, the coverage in this chapter represents a kind of benchmark for the information we would
like to acquire in conjunction with an optimization analysis.

This chapter covered three approaches to sensitivity analysis: the Parameter Analysis
Report, the Sensitivity Report, and the interpretation of optimal patterns. The Sensitivity
Report is the most canned approach. It is a well defined report that complements the use of
Solver. Most importantly, it automatically reveals shadow prices and allowable ranges.

The Parameter Analysis Report allows the user quite a lot of flexibility, and it provides for
linear programs the same kind of capability that Excel’s Data Table tool provides for basic
spreadsheet models. The effects of modifying a parameter in the model can be traced well
beyond the range in the Sensitivity Report, and shadow prices can be computed in Excel when-
ever we vary a right-hand-side parameter.

The recognition of patterns in linear programming solutions is a way of looking beyond the
specific numbers in the result and toward a broader economic imperative. By focusing on posi-
tive variables and binding constraints, this interpretation emphasizes the key factors in the model
that drive the form of the solution. The ability to detect these factors sharpens our intuition and
enhances our ability to implement effective decisions based on the model.

The examples in Section 4.6 illustrate the process of extracting insight from the pattern in a
linear programming solution. The first step is to describe a structural scheme for the pattern by
examining the optimal decision variables and binding constraints. The more challenging step is
to convert this qualitative description into a computational scheme that allows us to “construct”
the optimal solution from the given parameters. Ideally, the computational scheme determines

Figure 4.23. Sensitivity Report (Constraints section) for Example 3.6.
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the variables one at a time. This scheme can often be interpreted as a list of priorities, and those
priorities reveal the economic forces at work.

The pattern that emerges from the economic priorities is essentially a qualitative one, in
that we can describe it without using specific numbers. However, once we supply the parameters
of the constraints, the pattern leads us to the optimal quantitative solution. In a sense, it is almost
as if Solver first spots the optimal pattern and then says, “Give me the numerical information in
your problem.” For any specification of the numbers (within certain limits), Solver could then
compute the optimal solution by simply following the sequential steps in the pattern’s compu-
tational scheme. In reality, of course, Solver cannot know the pattern until the solution is deter-
mined, because the solution is a critical ingredient in the pattern.

Two diagnostic questions help determine whether we have been successful at extracting a
pattern: Is the pattern complete? Is it unambiguous? That is, the pattern must lead us to a full
solution of the problem, not just to a partial solution, and it must lead to a unique determination
of the variables. As a check on our specification of the pattern, we can derive shadow prices. In
each case, the shadow price comes from altering one constraint constant in the original problem.
We should be able to trace the incremental changes in the variables, through the various steps in
the pattern’s computational scheme, and ultimately derive the shadow price for the correspond-
ing constraint. We can also determine marginal values for changing several parameters at a time
in much the same way, and we can compute the allowable range over which these marginal
values continue to hold.

Unfortunately, it is not always the case that the pattern can be reduced to a list of assign-
ments in priority order. Occasionally, after we identify the positive variables and the binding
constraints in the optimal solution, we might be able to say no more than that the pattern
comes from solving a system of simultaneous equations determined by those constraints and
those variables. Nevertheless, in most cases, as the examples demonstrate, focusing on the pat-
tern can provide added insight beyond the numbers.

Patterns have certain limits, as suggested above. If we think of testing our specification of a
pattern by deriving shadow prices, we have to recognize that a shadow price has a limited range
over which it holds, as indicated by its allowable increase and allowable decrease. Beyond this
range, a different pattern prevails. As we change a constraint constant, the shadow price will
eventually change. The same is true of the pattern: Beyond the range in which the shadow
price holds, the pattern may change. In the product portfolio example, however, we were able
to specify the computational scheme in a general way, so that it holds even when the shadow
price changes. In that example, we were able to articulate the pattern at a high enough level
of generality that the qualitative “story” continues to hold even for substantial changes in the
given data.

EXERCISES

4.1. Transportation Patterns Revisited Revisit the transportation model of this chapter
and the pattern in its optimal solution.

(a) Suppose that Atlanta demand is increased by 100 units. Use the pattern to determine
the impact of this increase on the optimal total cost. What is the cost increase per unit
increase in demand at Atlanta? For how much of an increase in Atlanta demand will
this marginal cost continue to hold? Use the information in the Sensitivity Report to
confirm your results.
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(b) Repeat part (a) for a decrease of 100 units in Chicago demand.

(c) Repeat part (a) for an increase of 100 units in Minnesota capacity.

4.2. Product Portfolio Revisited Revisit the product portfolio model of this chapter and the
pattern in its optimal solution.

(a) Suppose that the credit limit of $30,000 is tightened. For each thousand-dollar
reduction, what is the impact on profit? Use the information in the Sensitivity
Report to confirm your results.

(b) Suppose that the minimum requirement for whipped potatoes is raised (above 300
cartons). Using the pattern, determine the impact of this demand increase on the
optimal profit. For how much of an increase in demand does this value hold?
Where does this information appear on the Sensitivity Report?

4.3. Distributing a Product The Lincoln Lock Company manufactures a commercial
security lock at plants in Atlanta, Louisville, Detroit, and Phoenix. The unit cost of pro-
duction at each plant is $35.50, $37.50, $37.25, and $36.25, and the annual capacities are
18,000, 15,000, 25,000, and 20,000, respectively. The locks are sold through wholesale
distributors in seven locations around the country. The unit shipping cost for each plant–
distributor combination is shown in the following table, along with the forecasted demand
from each distributor for the coming year.

Tacoma San Diego Dallas Denver St Louis Tampa Baltimore

Atlanta 2.50 2.75 1.75 2.00 2.10 1.80 1.65
Louisville 1.85 1.90 1.50 1.60 1.00 1.90 1.85
Detroit 2.30 2.25 1.85 1.25 1.50 2.25 2.00
Phoenix 1.90 0.90 1.60 1.75 2.00 2.50 2.65

Demand 5500 11,500 10,500 9600 15,400 12,500 6600

(a) Determine the least costly way of shipping locks from plants to distributors.

(b) List the shadow prices corresponding to each plant’s capacity. Which capacity has the
largest shadow price? For how large an increase does this value hold?

(c) Describe the qualitative pattern in the solution of part (a).

(d) Use the pattern in (c) to trace the effects of increasing the demands at Tacoma, San
Diego and Dallas by 100 simultaneously. How will the shipping schedule change?
What will be the change in the optimal total cost?

(e) For how much of a change in demand in part (d) will the pattern persist?

4.4. Make or Buy A sudden increase in the demand for smoke detectors has left Acme
Alarms with insufficient capacity to meet demand. The company has seen monthly
demand from its retailers for its electronic and battery-operated detectors rise to 20,000
and 10,000, respectively, and Acme wishes to continue meeting demand. Acme’s
production process involves three departments: Fabrication, Assembly and Shipping.
The relevant quantitative data on production and prices are summarized below.
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Monthly hours Hours/unit Hours/unit
Department available (electronic) (battery)

Fabrication 2000 0.15 0.10
Assembly 4200 0.20 0.20
Shipping 2500 0.10 0.15

Variable cost/unit $18.80 $16.00
Retail price $29.50 $28.00

The company also has the option of obtaining additional units from a subcontractor,
who has offered to supply up to 20,000 units per month in any combination of electronic
and battery operated models, at a charge of $21.50 per unit. For this price, the subcontrac-
tor will test and ship its models directly to the retailers without using Acme’s production
process.

(a) Determine how the manufacturer should allocate its in-house capacity and how it
should utilize the subcontractor. What are the maximum profit and the corresponding
make/buy levels? (This is a planning model; fractional decisions are acceptable.)

(b) Investigate the solution for Shipping capacities between 1200 and 2400 hours. Draw
a graph showing how the optimal quantities change over this range.

(c) Describe the qualitative pattern in the solution of part (a).

(d) Use the pattern in (c) to trace the effects of increasing the Fabrication capacity by
10%. How will the optimal make/buy mix change? How will the optimal profit
change?

(e) For how much of a change in Fabrication capacity will the pattern in (c) persist?

4.5. Selecting an Investment Portfolio An investment manager wants to determine an opti-
mal portfolio for a wealthy client. The fund has $2.5 million to invest, and its objective is
to maximize total dollar return from both growth and dividends over the course of the
coming year. The client has researched eight high-tech companies and wants the portfolio
to consist of shares in these firms only. Three of the firms (S1–S3) are primarily software
companies, three (H1–H3) are primarily hardware companies, and two (C1–C2) are
internet consulting companies. The client has stipulated that no more than 40 percent
of the investment be allocated to any one of these three sectors. To assure diversification,
at least $100,000 must be invested in each of the eight stocks.

The table below gives estimates from the investment company’s database relating to
these stocks. These estimates include the price per share, the projected annual growth rate
in the share price, and the anticipated annual dividend payment per share.

Stock

S1 S2 S3 H1 H2 H3 C1 C2

Price per share $40 $50 $80 $60 $45 $60 $30 $25
Growth rate 0.05 0.10 0.03 0.04 0.07 0.15 0.22 0.25
Dividend $2.00 $1.50 $3.50 $3.00 $2.00 $1.00 $1.80 $0.00
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You have been asked to develop an initial planning model (i.e., fractional outcomes for
the decisions are acceptable).

(a) Determine the maximum return on the portfolio. What is the optimal number of
shares to buy for each of the stocks? What is the corresponding dollar amount
invested in each stock?

(b) Draw a graph that shows how the optimal dollar return varies with the minimum
investment floor for the stocks (currently $100,000). Consider a range up to
$300,000.

(c) Describe the qualitative pattern in the solution of part (a).

(d) Use the pattern in (c) to trace the effects of additional investment, beyond the original
$2.5 million. How will the portfolio change? What is the marginal rate of return?
Confirm this rate in the Sensitivity Report.

(e) For how much of a change in the investment quantity will the pattern in (c) persist?

4.6. College Expenses Revisited Revisit the college expense planning network example of
Chapter 3. Suppose the rates on the four investments A, B, C, and D have dropped to 5,
11, 18, and 55 percent, respectively. Suppose that the estimated yearly costs of college
have been revised to 25, 27, 30, and 33.

(a) Determine the minimum investment that will cover college expenses.

(b) Use shadow price information to determine how much the initial investment would
have to increase to cover an additional dollar of college expenses in the first year.
Repeat for the second, third and fourth years.

(c) Describe the pattern in the optimal solution of part (a).

(d) Use the pattern in (c) to determine the marginal cost (of increased initial investment)
that would be incurred to meet additional expenses in the first year of college.

(e) Repeat (d) for the second, third, and fourth years.

4.7. Leasing Warehouse Space Cox Cable Company needs to lease warehouse storage
space for five months at the start of the year. It knows how much space will be required
in each month. However, since these space requirements are quite different, it may be
economical to lease only the amount needed each month on a month-by-month basis.
On the other hand, the monthly cost for leasing space for additional months is much
less than for the first month, so it may be desirable to lease the maximum amount
needed for the entire five months. Another option is the intermediate approach of chan-
ging the total amount of space leased (by adding a new lease and/or having an old
lease expire) at least once but not every month. Two or more leases for different terms
can begin at the same time.

The space requirements (in square feet) and the leasing costs (in dollars per thousand
square feet) are given in the tables below.

Month Space
requirements

Lease
length

Lease
cost

Jan 15,000 1 month $280
Feb 10,000 2 450
Mar 20,000 3 600
April 5000 4 730
May 25,000 5 820
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The task is to find a leasing schedule that provides the necessary amounts of space at the
minimum cost.

(a) Determine the optimal leasing schedule and the optimal total cost.

(b) Consider what happens when the cost of a 5-year lease (currently $820) changes.
Construct a graph showing how total cost varies with the cost of a 5-year lease,
over the range from $800 to $1000.

(c) Describe the qualitative pattern in the solution of part (a).

(d) Use the pattern in (c) to trace the effects of increasing the space required for January.
How will the leasing schedule change? How will the total cost change? Confirm this
cost in the Sensitivity Report.

(e) For how much of a change in January’s requirement will the pattern in (c) persist?
Confirm this change in the Sensitivity Report.

4.8. Purchasing Components American Electronics Corporation (AEC) is a leading man-
ufacturer of networked computer systems and associated peripherals. Their product line
consists of two families, the Desktop (DK) family and the Workstation (WS) family.
Within each family, different models are for sale, as shown in the table of marketing
data. In the table below, we find Marketing’s estimates of the maximum demand potential
in the coming quarter for some of the individual models and for each family. In addition,
information is given on minimum demand levels, which represent sales contracts already
signed with major distributors.

Min. Max. Selling
Model demand demand price

DK-1 – 1800 $3000
DK-2 600 – 2000
DK-3 – 300 1500
DK family 3600

WS-1 500 – 1500
WS-2 400 – 800
WS family 2500

AEC is a vertically integrated firm, manufacturing many of its key components in its own
factories. Recently, AEC headquarters has learned from its Semiconductor Division that
the supply of their new CPU chips is quite limited. In addition, the Memory Division has
capacity to produce just a finite number of disk drives, even with a two-shift production
schedule, and there is industry-wide rationing of memory chips (which AEC purchases
externally). This information, in the form of quarterly supply quantities, along with infor-
mation on the composition of the various products, is summarized in the table below.

Usage in
Supply

Component DK-1 DK-2 DK-3 WS-1 WS-2 limit

CPU chip 1 1 1 1 1 6000
Disk drives 1 2 1 2 1 9000
Memory chips 4 2 2 2 1 12,000
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In order to help understand the problem they were facing, planners at AEC have asked you
to build a linear programming model. Since AEC is following a program of no layoffs,
and since nearly all production costs are fixed, the model should maximize revenue for
the coming quarter, subject to supply and demand constraints.

(a) Determine the optimal product mix. What are the maximum revenue and the corre-
sponding mix?

(b) Describe the qualitative pattern in the solution.

(c) Use the pattern in (b) to trace the effects of increasing the Disk Drive Supply capacity
by 150. How will the product quantities change? How will the optimal profit change?

(d) For how much of a change in the Disk Drive Supply capacity will the pattern persist?

4.9. Production Planning for Automobiles The Auto Company of America (ACA) pro-
duces four types of cars: subcompact, compact, intermediate and luxury. ACA also pro-
duces trucks and vans. Vendor capacities limit total production capacity to at most
1,200,000 vehicles per year. Subcompacts and compacts are built together in a facility
with a total annual capacity of 620,000 cars. Intermediate and luxury cars are produced
in another facility with capacity of 400,000; and the truck/van facility has a capacity
of 275,000. ACA’s marketing strategy requires that subcompacts and compacts must con-
stitute at least half of the product mix for the four car types. Profit margins, market poten-
tial and fuel efficiencies are summarized below.

Profit margin Market potential Fuel efficiency
Type ($/vehicle) (sales in 000s) (MPG)

Subcompact 150 600 40
Compact 225 400 34
Intermediate 250 300 15
Luxury 500 225 12
Truck 400 325 20
Van 200 100 25

Current Corporate Average Fuel Efficiency (CAFE) standards require an average
fleet fuel efficiency of at least 27 MPG. ACA would like to use a linear programming
model to understand the implications of government and corporate policies on its pro-
duction plans.

(a) Determine the optimal production plan for ACA. What is the maximum profit and the
corresponding mix?

(b) Describe the qualitative pattern in the solution.

(c) Use the pattern in (b) to trace the effects of increasing market potential for all vehicle
types by 10 units, simultaneously. How will the product quantities change? How will
the optimal profit change?

(d) For how much of a simultaneous change in the demands will the pattern in (b) persist?

(e) Investigate how much annual profit would drop if the fuel efficiency requirement
were raised above 27 MPG. Build a table showing the requirement and the optimal
profit, with fuel efficiencies of 27 MPG through 32 MPG in steps of 1 MPG.

4.10. Production Planning with Environmental Constraints You are the Operations
Manager of Lovejoy Chemicals, Inc., which produces five products in a common produc-
tion facility that will be subject to proposed Environmental Protection Agency (EPA)
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limits on particulate emissions. For each product, Lovejoy’s sales potentials (demand
levels that Lovejoy can capture) are expected to remain relatively flat for at least the
next five years. Relevant data for each product are as follows. (Note: T denotes tons.)

Sales
potential Variable costs Revenues

Particulate
emissions

Product (T/year) ($/T) ($/T) (T/T produced)

A 2000 700 1000 0.0010
B 1600 600 800 0.0025
C 1000 1000 1500 0.0300
D 1000 1600 2000 0.0400
E 600 1300 1700 0.0250

Your production facility rotates through the product line, because it is capable of produ-
cing only one product at a time. The production rates differ for the various products due to
processing needs. It takes 0.3 hours to make one ton of A, 0.5 hours for B, and one hour
each to make a ton of C, D, or E. The facility can be operated up to 4000 hours each year.

The EPA has proposed a “bubble policy” for your industry. In this form of regu-
lation, an imaginary bubble encloses the manufacturing facility and only total particulates
that escape the bubble are regulated. This sort of policy replaces historical attempts by the
EPA to micromanage emissions within a firm, and it allows Lovejoy to make any changes
it wishes, provided the total particulate emissions from its facility are kept below certain
limits. The current proposal is to phase-in strict particulate emissions limits over the next
five years. These limits on total particulate emissions are shown in the table below.

Year 1 2 3 4 5

Allowable emissions
(T/year)

Unlimited 80 60 40 20

One strategy for satisfying these regulations is to adjust the product mix, cutting back
on production of some products if necessary. Lovejoy wishes to explore this strategy
before contemplating the addition of new equipment.

(a) Determine the maximum profit Lovejoy can achieve from its product line in the
coming year (Year 1). For each future year (Years 2–5), as emissions limits are
imposed and tightened, what will Lovejoy’s profits be?

(b) Describe the qualitative pattern in the solution.

(c) Suppose the EPA were to issue transferable emissions rights to firms in the industry.
Use the pattern in (b) to determine how much Lovejoy would be willing to pay in
Year 4 to be allowed to emit one extra ton of particulates above the proposed limit.

4.11. Oil Distribution Texxon Oil Distributors, Inc., has three active oil wells in a west Texas
oil field. Well 1 has a capacity of 93 thousand barrels per day (TBD), Well 2 can produce
88 TBD and Well 3 can produce 95 TBD. The company has five refineries along the Gulf
Coast, all of which have been operating at stable demand levels. In addition, three pump
stations have been built to move the oil along the pipelines from the wells to the refineries.
Oil can flow from any one of the wells to any of the pump stations, and from any one of
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the pump stations to any of the refineries, and Texxon is looking for a minimum-cost
schedule. The refineries’ requirements are as follows.

Refinery R1 R2 R3 R4 R5

Requirement
(TBD)

30 57 48 91 48

The company’s cost accounting system recognizes charges by the segment of pipeline that
is used. These daily costs are given in the tables below, in dollars per thousand barrels.

To Pump A Pump B Pump C

Well 1 1.52 1.60 1.40
From Well 2 1.70 1.63 1.55

Well 3 1.45 1.57 1.30

To R1 R2 R3 R4 R5

Pump A 5.15 5.69 6.13 5.63 5.80
From Pump B 5.12 5.47 6.05 6.12 5.71

Pump C 5.32 6.16 6.25 6.17 5.87

(a) Determine the least costly way of supplying oil from the wells to the refineries.

(b) Describe the qualitative pattern in the solution.

(c) Use the pattern in (b) to trace the effects of increasing the demands at R1 and R2 by
the same quantity simultaneously. How will the shipping schedule change? How will
the total cost change?

(d) For how much of a change in demand will the pattern in (b) persist?

4.12. Selecting a Portfolio A portfolio manager has developed a list of six investment
alternatives for a multiyear horizon. These are: Treasury bills, Common stock,
Corporate bonds, Real estate, Growth funds, and Savings & Loans. These investments
and their various financial factors are described below. In the table, the length represents
the estimated number of years required for the annual rate of return to be realized. The
annual rate of return is the expected rate over the multiyear horizon. The risk coefficient
is a subjective estimate representing the manager’s appraisal of the relative safety of each
alternative, on a scale of 10. The growth potential is also a subjective estimate of the
potential increase in value over the horizon.

Portfolio data

Alternative TB CS CB RE GF SL

Length 4 7 8 6 10 5
Annual return (%) 6 15 12 24 18 9
Risk coefficient 1 5 4 8 6 3
Growth potential (%) 0 18 10 32 20 7
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The manager wishes to maximize the annual rate of return on a $3 million portfolio,
subject to the following restrictions.

The weighted average length should not exceed 7 years.

The weighted average risk coefficient should not exceed 5.

The weighted average growth potential should be at least 10 percent.

The investment in real estate should be no more than twice the investment in stocks
and bonds (i.e., in CS, CB, and GF) combined.

(a) What is the optimal return (as a percentage) and the optimal allocation of investment
funds?

(b) What is the marginal rate of return, as indicated by the shadow price information in
the Sensitivity Report? Confirm this marginal rate by raising the investment amount
slightly and re-solving the linear program.

4.13. Coffee Blending and Sales Hill-O-Beans Coffee Company blends four component
beans into three final blends of coffee: One is sold to luxury hotels, another to restaurants,
and the third to supermarkets for store-label brands. The company has four reliable bean
supplies: Argentine Abundo, Peruvian Colmado, Brazilian Maximo, and Chilean Saboro.
The table below summarizes the very precise recipes for the final coffee blends, the cost
and availability information for the four components, and the wholesale price per pound
of the final blends. The percentages indicate the fraction of each component to be used in
each blend.

Cost per Max weekly
Component (lb) Hotel Rest Market pound availability

Abundo 20% 35% 10% $0.60 40,000
Colmado 40% 15% 35% $0.80 25,000
Maximo 15% 20% 40% $0.55 20,000
Saboro 25% 30% 15% $0.70 45,000

Wholesale price
Per pound $1.25 $1.50 $1.40

The processor’s plant can handle no more than 100,000 pounds per week, and Hill-
O-Beans would like to operate at capacity. There is no problem in selling the final blends,
although the Marketing Department requires minimum production levels of 10,000,
25,000, and 30,000 pounds, respectively, for the hotel, restaurant, and market blends.

(a) In order to maximize weekly profit, how many pounds of each component should be
purchased?

(b) What is the shadow price (from the Sensitivity Report) on the availability of Maximo
beans?

(c) How much (per pound) should Hill-O-Beans be willing to pay for additional pounds
of Maximo beans in order to raise total profit?

4.14. Production Planning for Components Rummel Electronics produces two PC cards,
a modem and a network adapter. Demand for these two products exceeds the amount
that the firm can make, but there are no plans to increase production capacity in the
short run. Instead, the firm plans to use subcontracting.

168 Chapter 4 Sensitivity Analysis in Linear Programs



The two main stages of production are fabrication and assembly, and either step can
be subcontracted for either type of card. However, the company policy is not to subcon-
tract both steps for either product. (That is, if modem cards are fabricated by a subcontrac-
tor, then they must be assembled in-house.) Components made by subcontractors must
pass through the shipping and receiving departments, just like components made intern-
ally. At present, the firm has 5200 hours available in fabrication, 3600 in assembly and
3200 in shipping/inspection. The production requirements, in hours per unit, are given
in the following table:

Product/mode Fab. Asy. Ship.

Modem, made entirely
in-house

0.35 0.16 0.08

Network, made entirely
in-house

0.47 0.15 0.12

Modem, fabricated by sub – 0.18 0.10
Network, fabricated by sub – 0.16 0.15
Modem, assembled by sub 0.35 – 0.09
Network, assembled by sub 0.47 – 0.14

The direct material costs for the modem cards are $3.25 for manufacturing and $0.50
for assembly; for network cards, the costs are $6.10 and $0.50. Subcontracting the
manufacturing operation costs $5.35 for modem cards and $8.50 for network cards.
Subcontracting the assembly operation costs $1.50 for either product. Modem cards
sell for $20, and network cards sell for $28. The firm’s policy, for each product, is that
at most 40 percent of the units produced can have subcontracted fabrication, and at
most 70 percent of the units can have subcontracted assembly.

(a) Determine the production and subcontracting schedule that will maximize profits.
How many units of each product should be sold, in the optimal plan? What
volume should the subcontractor handle?

(b) If 100 hours of overtime could be scheduled, which department(s) should be allo-
cated the overtime. (Use the Sensitivity Report to justify your answer.)

4.15. Make/Buy Planning The CammTex Fabric Mill is in the process of deciding on a pro-
duction schedule. It wishes to know how to weave the various fabrics it will produce
during the coming quarter. The sales department has confirmed orders for each of the
15 fabrics that are produced by CammTex. These quarterly demands are given in the
table below. Also tabulated is the variable cost for each fabric. The mill operates continu-
ously during the quarter: 13 weeks, 7 days a week, and 24 hours a day.

There are two types of looms: dobbie and regular. Dobbie looms can make all fab-
rics, and they are the only looms that can weave certain fabrics such as plaids. The pro-
duction rate for each fabric on each type of loom is also given in the table. (If the
production rate is zero, the fabric cannot be woven on that type of loom.) CammTex
has 90 regular looms and 15 dobbie looms.

Fabrics woven at CammTex proceed to the finishing department in the mill and then
are sold. Any fabrics that are not woven in the mill because of limited capacity will be
subcontracted to an outside producer and sold at the selling price. The cost of purchasing
from the subcontractor is also given in the table.
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Demand Dobbie Regular Mill cost Sub. cost
Fabric (Yd) (Yd/Hr) (Yd/Hr) ($/Yd) ($/Yd)

1 16,500 4.653 0.00 0.6573 0.80
2 52,000 4.653 0.00 0.555 0.70
3 45,000 4.653 0.00 0.655 0.85
4 22,000 4.653 0.00 0.5542 0.70
5 76,500 5.194 5.313 0.6097 0.75
6 110,000 3.767 3.809 0.6153 0.75
7 122,000 4.055 4.185 0.6477 0.80
8 62,000 5.208 5.232 0.488 0.60
9 7500 5.208 5.232 0.5029 0.70
10 69,000 5.208 5.232 0.4351 0.60
11 70,000 3.652 3.733 0.6417 0.80
12 82,000 4.007 4.185 0.5675 0.75
13 10,000 4.291 4.439 0.4952 0.65
14 380,000 5.208 5.232 0.3128 0.45
15 62,000 4.004 4.185 0.5029 0.70

(a) What is minimum total cost of production and purchasing for CammTex?

(b) Construct a table showing how the optimal total cost varies with the number of
Dobbie looms available, in the range 10–18.

(c) Describe the qualitative pattern in the solution of part (a).

(d) Use the pattern in (c) to trace the effect on the optimal cost of increasing demand for
fabric 6 by 100 yards.

(e) Repeat (d) for fabric 5.

(f) Repeat (d) for fabric 4.

4.16. Cash Planning A startup investment project needs money to cover its cash flow
needs. The cash income and expenditures for the period January through April are as
follows.

Jan Feb Mar Apr Total

Cash flow ($000) –150 –450 500 250 150

At the beginning of May all excess cash will be paid out to investors. There are two
ways to finance the project. One is the possibility of taking out a long-term loan at
the beginning of January. The interest on this loan is 1 percent per month, payable on
the first of the month for the next three months. This loan can be as large as $400,000;
the principal is due April 1; and no prepayment is permitted. The alternative is a short-
term loan that can be taken out at the beginning of each month. This loan must be paid
back at the beginning of the following month with 1.2 percent interest. A maximum of
$300,000 may be used for this short-term loan in any month. In addition, there is the
possibility of investing in a money-market fund at the start of each month. This fund
will pay 0.7 percent interest at the beginning of the following month.
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Assume the following about the timing of cash flows.

† For months in which there is a net cash deficit, there must be sufficient funds on
hand at the start of the month to cover the net outflow.

† For months in which there is a net cash surplus, the net inflow cannot be used until
the end of the month (i.e., the start of the next month).

(a) What is the maximum amount that can be returned to investors?

(b) Describe the pattern in the optimal solution.

(c) Use the pattern in (b) to derive the cost of funds for each month in the planning
period. That is, if there is a $1000 change in the cash flows for any month, what
would be the dollar change in the amount returned to investors?

(d) Show how the shadow prices in the Sensitivity Report can be used to confirm the
answers in (c).

Case: Cox Cable and Wire Company

Meredith Ceh breathed a sigh of relief. Finally, all the necessary figures seemed to be correctly in
place, and her spreadsheet looked complete. She was confident that she could analyze the situ-
ation that John Cox had described, but she wondered if there were other concerns she should be
addressing in her response.

Mr Cox, president of Cox Cable and Wire Company, and grandson of the company’s foun-
der, had asked Meredith to come up with plans to support the preliminary contract he had
worked out with Midwest Telephone Company. The contract called for delivery of 340 reels
of cable during the summer. He was leaving the next day to negotiate a final contract with
Midwest and wanted to be sure he understood all of the implications.

According to Mr Cox, he had been looking for a chance to become a supplier to a large
company like Midwest, and this seemed to be the right opportunity. Demand from some of
Cox Cable’s traditional customers had slackened, and as a result there was excess capacity
during the summer. Nevertheless, he wanted to be sure that, from the start, his dealings with
Midwest would be profitable, and he had told Meredith that he was looking for a profitability
target of at least 25 percent. He also wanted her to confirm that there was sufficient capacity
to meet the terms of the contract. He had quickly mentioned a number of other items, but
those were secondary to profitability and capacity.

Background
The Cox Cable and Wire Company sold a variety of products for the telecommunications indus-
try. At its Indianapolis plant, the company purchased uncoated wire in standard gauges,
assembled it into multiwire cables, and then applied various coatings according to customer spe-
cification. The plant essentially made products in two basic families—standard plastic and high
quality Teflon. The two coatings came in a variety of colors, but these were changed easily by
introducing different dyes into the basic coating liquid.

The production facilities at Indianapolis consisted of two independent process trains (semi-
automated production lines), referred to as the General and National trains, after the companies
that manufactured them. Both plastic-coated and the Teflon-coated cable could be produced on
either process train; however, Teflon coating was a faster process due to curing requirements.
Planning at Cox Cable was usually done on an annual and then a quarterly basis. The labor
force was determined by analyzing forecast demand for the coming year, although revisions
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were possible as the year developed. Then, on a quarterly basis, more specific machine schedules
were made up. Each quarter the process trains were usually shut down for planned maintenance,
but the maintenance schedules were determined at the last minute, after production plans were in
place, and they were often postponed when the schedule was tight.

Due to recent expansions, there was not much storage space in the plant. Cable could tem-
porarily be stored in the shipping area for the purposes of loading trucks, but there was no space
for cable to be stored for future deliveries. Additional inventory space was available at a nearby
public warehouse.

Meredith had become familiar with all of this information during her first week as a
summer intern. At the end of the week, she had met with Mr Cox and he had outlined the
Midwest contract negotiation.

The Contract
The preliminary contract was straightforward. Midwest had asked for the delivery quantities out-
lined in Exhibit 4.1. Prices had also been agreed on, although Mr. Cox had said he wouldn’t be
surprised to find Midwest seeking to raise the Teflon delivery requirements during the final
negotiation.

Meredith had gone first to the Production Manager, Jeff Knight, for information about
capacity. Jeff had provided her with data on production times (Exhibit 4.2), which he said
were pretty reliable, given the company’s extensive experience with the two process trains.
He also gave her the existing production commitments for the summer months, showing the
available capacity given in Exhibit 4.3. Not all of these figures were fixed, he said.
Apparently, there was a design for a mechanism that could speed up the General process
train. Engineers at Cox Cable planned to install this mechanism in September, adding 80
hours per month to capacity. “We could move up our plans, so that the additional 80 hours
would be available to the shop in August,” he remarked. “But that would probably run about
$900 in overtime expenses, and I’m not sure if it would be worthwhile.”

EXHIBIT 4.1
Contract Delivery Schedule
and Prices

Month Plastic Teflon

June 50 30
July 100 60
August 50 50

Price $360 $400

EXHIBIT 4.2
Production Capabilities, in
Hours per Reel

Process
train Plastic Teflon

General 2.0 1.5
National 2.5 2.0
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After putting some of this information into her spreadsheet, Meredith spoke with the
plant’s Controller, Donna Malone, who had access to most of the necessary cost data.
Meredith learned that the material in the cables cost $160 per reel for the plastic-coated
cable, and $200 for the Teflon-coated cable. Packaging costs were $40 for either type of
cable, and the inventory costs at the public warehouse came to $10 per reel for each month
stored. “That’s if you can get the space,” Donna commented. “It’s a good idea to make reser-
vations a few weeks in advance, otherwise we might find they’re temporarily out of space.”
Donna also provided standard accounting data on production costs (Exhibit 4.4). According
to Donna, about half of the production overhead consisted of costs that usually varied with
labor charges, while the rest was depreciation for equipment other than the two process
trains. The machine depreciation charges were broken out separately, as determined at the
time the machinery was purchased. For example, the General process train originally cost
$500,000 and, for tax purposes, had an expected life of five years, or about 10,000 hours;
hence its depreciation rate of $50 per hour.

The Analysis
Meredith was able to consolidate all of the information she collected into a spreadsheet (Exhibit
4.5).3 Making what she felt were reasonable assumptions about relevant cost factors, she was
able to optimize the production plan, and she determined that it should be possible to meet
the 25 percent profitability target. Nevertheless, there seemed to be several factors in it that
were subject to change—things that had come up in her various conversations, such as mainten-
ance, warehousing, and the possibility of modifying the contract. She expected that Mr Cox
would quiz her about all of these factors, and she knew it would be important for her to be pre-
pared for his questions.

EXHIBIT 4.4 Accounting Data for Production

Cost category General National

Machine Depr. $50.00/hr $40.00/hr
Direct labor 16.00 16.00
Supervisor 8.00 8.00
Production Ohd 12.00 12.00

EXHIBIT 4.3 Unscheduled Production Hours

Month General National

June 140 250
July 60 80
August 150 100

3The spreadsheet can be found at the book’s website: www.mba.tuck.dartmouth.edu/opt/.
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Chapter 5

Linear Programming:
Data Envelopment Analysis

Chapters 2 and 3 examined the basic types of structures that appear in formulations of
linear programs—allocation, covering, blending, and network models. Not every
application of linear programming can be classified as one of those four types, but
most applications resemble one or more of them. In this chapter, we look at a type
of linear program that has a special application and a special kind of interpretation.
This type is associated with Data Envelopment Analysis, or DEA. For classification
purposes, the DEA model is essentially an allocation model, but its unique appli-
cations make it an important type of model to study in its own right.

As the examples in Chapters 2 and 3 indicated, linear programming is typically
used as an ex ante tool in planning, that is, as an aid in choosing among alternative
possible courses of action. In DEA, linear programming is used as an ex post tool,
to evaluate performance that has already been observed. Compared to other linear pro-
gramming applications, DEA is a relative newcomer. The first articles on the method-
ology began appearing in the mid-1970s, and researchers have been elaborating the
theory ever since. As recognition of DEA has spread, the technique has been applied
in a variety of settings, such as public schools, courts of law, hospitals, oil and gas pro-
duction, vehicle maintenance, and banking.

The primary elements in a DEA study are a set of decision-making units
(DMUs), along with their measured inputs and outputs. The DMUs may be different
branches of the same large bank, or different hospitals in the same region or different
offices of the same insurance company, but they should be reasonably homogeneous
and separately managed. In the ideal case, the DMUs have a well defined set of
common inputs and outputs.

The purpose of DEA is to determine which of the DMUs make efficient use of
their inputs and which do not. For the inefficient units, the analysis can actually quan-
tify what levels of improved performance should be attainable. In addition, the analy-
sis indicates where an inefficient DMU might look for benchmarking help as it
searches for ways to improve.

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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DEA produces a single, comprehensive measure of performance for each of the
DMUs. If the situation were simple, and there were just one input and one output,
then we would define performance as the ratio of output to input, and we would
likely refer to this ratio as “productivity” or “efficiency.” The best ratio among all
the DMUs would identify the most efficient DMU, and every other DMU would be
rated by comparing its ratio to the best one. As an example, suppose that we have
been hired as consultants to the White River Dairy Cooperative.

EXAMPLE 5.1 The White River Dairy Cooperative

Five dairy farms make up the White River Dairy Cooperative. The farms are similar in that they
all produce just one product—milk. Furthermore, the major resource for the farms is their cows.
Last month’s activity is summarized in the following table.

Cows Milk Productivity Efficiency

Farm 1 15 60 4.0 0.80
Farm 2 10 48 4.8 0.96
Farm 3 20 70 3.5 0.70
Farm 4 12 60 5.0 1.00
Farm 5 16 72 4.5 0.90

Using the data in this table, our task is to identify efficient and inefficient dairy farms. B

In this example, productivity is calculated as the ratio of milk produced to
cows owned, or output divided by input. The efficiency rating in the table is just
a normalized measure of the same thing. In other words, the value of 1.00 is assigned
to the maximum productivity in the set (for Farm 4), and the remaining values are
calculated as the ratio of each farm’s productivity to the maximum productivity
in the set.

Without access to detailed knowledge about the operation of each farm, we might
infer that Farm 4 has achieved its maximum efficiency rating because of factors such
as the following.

† Investment in the latest milking equipment (Technology).

† Adherence to a regular maintenance schedule (Procedures).

† Incentives for worker quality and productivity (Management).

Something about these categories of factors is probably lacking at the other farms. For
instance, if Farm 1 could employ the same technology, procedures, and management
as Farm 4, then we would expect that with 15 cows, it should be able to achieve a milk
output of 75. (This target figure is the productivity of the best farm multiplied by the
number of cows at Farm 1. This output target can also be computed as the actual output
for Farm 1 divided by the efficiency of Farm 1.) Alternatively, we would expect that
the same milk output of 60 should be achievable with only 12 cows (obtained by
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multiplying the input by the efficiency). In any event, the comparative analysis pro-
vides two kinds of information for Farm 1: First, its productivity could be as much
as 25 percent higher than it actually was, and second, it could probably learn a lot
by studying—and even imitating—the operation of Farm 4.

In more practical cases, a DMU is characterized by outputs and inputs.
Productivity is still a ratio, usually a weighted sum of the outputs divided by a
weighted sum of the inputs. When more than one output exists, we need to use weights
in order to value a combination of outputs and quantify them in a single number. The
same holds for inputs. When we can quantify the value of outputs and inputs in a
single number, then we can take their ratio and compute a productivity measure.
We can also normalize that value by comparing it to productivities of other DMUs
and scale the results so that the best value is 1. By relying on efficiency, DEA is
useful when no single output metric captures performance comprehensively and
when some measure of outputs relative to inputs seems appropriate. This makes
DEA a valuable tool for situations in which several dimensions of performance are
important.

DEA has often been applied in nonprofit industries, characterized by multiple out-
puts of interest and some ambiguity about the relative importance of those outputs. For
example, in comparing the performance of mental health clinics, it might be difficult to
place relative values on services for domestic abuse and drug addiction. DEA is well
suited to this type of situation because it does not require importance weights for the
various outputs (or inputs) to be established beforehand. Instead, as we shall see, it
determines the weights in the analysis and allows each DMU to be evaluated in its
best possible light.

Even in for-profit industries, a total profit figure may not be adequate for evaluat-
ing productivity. In the case of branch banks, which we use for the purposes of illus-
tration, suppose that profit is entirely determined by loan and deposit balances. In the
short run, fluctuations in the profit margins for loans or deposits may influence a
branch’s profits, but short-run profits may not indicate how productive the branch
has been at developing and managing loans and deposits. In addition, short-run profits
at a particular time may not indicate how well the branch will perform when the market
shifts and margins change. Therefore, a gross profit figure may not be the best measure
of branch productivity. Instead, DEA combines the loan and deposit balances into a
single output measure, considering every possible ratio of profit margins, and chooses
the margins that are most favorable to the branch being evaluated. Then, having chosen
a favorable set of loan and deposit margins for each branch, the DEA program rates the
efficiency of each branch on a scale of 0 to 1.

5.1. A GRAPHICAL PERSPECTIVE ON DEA

To illustrate the use of weighted averages in DEA, we move from the one-input, one-
output case of dairy farms to a simplified one-input, two-output case involving branch
banks. This time, we illustrate the analysis with a graphical approach.
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EXAMPLE 5.2 Metropolis National Bank

Metropolis National Bank operates five branches around the city. The branches all offer the same
services and rely on identical mixes of labor and capital. As a result, the cost of operation is the
same at each branch, although their profiles of loans and deposits differ. The following table
summarizes the level of branch performance for the previous quarter.

DMU Expense Loans Deposits Efficiency

Branch 1 100 10 31 1.00
Branch 2 100 15 25 0.83
Branch 3 100 20 30 1.00
Branch 4 100 23 23 0.92
Branch 5 100 30 20 1.00

In the table, last quarter’s inputs are represented by total expenses (in thousands of dollars),
which happen to be identical for the branches. The table also provides the levels of activity
in loans and deposits, shown separately. Loan and deposit levels are expressed in millions of
dollars, averaged over the previous quarter. B

As shown in the table, Branches 1, 3, and 5 have the highest efficiency rating of 1;
therefore, they are classified as efficient. An efficiency rating of 1 means that we can
find a pair of weights on loans and deposits for which the branch would be the most
productive branch in the system. For instance, suppose the weights are 3 for loans and
33 for deposits. Then the weighted values of outputs for the branches are as follows.

DMU Loans Deposits Value

Branch 1 10 31 1053
Branch 2 15 25 870
Branch 3 20 30 1050
Branch 4 23 23 828
Branch 5 30 20 750

In this comparison, Branch 1 has the highest value. For the pair of weights (3, 33),
Branch 1 is the most productive DMU on the list. On the other hand, if the weights
were (12, 10), then Branch 5 would be the most productive. As long as we can find
at least one set of weights for which Branch 1 achieves the highest value, then
Branch 1 is classified as efficient. Later, we impose some restrictions on the weights
chosen.

For Branches 2 and 4, the story is different: No possible weights exist on loans and
deposits that would make these branches the most productive. For Branch 2, this is
easy to see, because it is “dominated” by Branch 3—that is, Branch 3 performs
better on both dimensions than Branch 2. Since the input expenses are the same, what-
ever weights we choose for loans and deposits, Branch 3 will show a higher total value
than Branch 2 and therefore greater productivity. The case of Branch 4, however, is
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less clear. No other branch dominates Branch 4, yet it is still inefficient because no pair
of weights can give Branch 4 the highest output value.

Figure 5.1 displays the output for each branch as a point on a two-dimensional
graph. Thus, Branch 1 corresponds to the point (10, 31) in the figure. The points
are labeled by branch number.

For any inefficient branch, such as Branch 4, the DEA procedure creates a
Hypothetical Comparison Unit (HCU) that is built from the features of efficient
units. These efficient DMUs are referred to as the reference set for the inefficient
branch. In the case of Branch 4, the reference set is made up of Branches 3 and 5,
and the comparison unit corresponds to the point (25, 25) in Figure 5.2. We can
form the comparison unit by adding 0.5 times the profile (inputs and outputs) of
Branch 3 and 0.5 times the profile of Branch 5

0:5 (Branch 3 Data) ¼ 0:5 (100 20 30)

0:5 (Branch 5 Data) ¼ 0:5 (100 30 20)

HCU Data ¼ (100 25 25)

Thus, we obtain a hypothetical branch with an input of 100 and with outputs of
25 (loans) and 25 (deposits). Graphically, the point (25, 25), labeled 40, lies on the
straight line connecting points 3 and 5, as shown in Figure 5.2. Among all the
points on the line (i.e., all linear combinations of 3 and 5), 40 is the only one that
contains the same ratio of loans and deposits as that of Branch 4. Thus, we can
think of the comparison unit as producing the same product mix, but producing

Figure 5.1. Outputs for each of the branches in Example 5.2.
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more of it than Branch 4. Consequently, the comparison unit dominates Branch 4, even
though there is no actual branch that does.

For Branch 2, the HCU corresponds to the point (18.1, 30.2), labeled 20 in
Figure 5.2. Although we noted that Branch 2 is dominated by Branch 3, this compari-
son unit does not correspond to point 3 because the output mix for Branch 3 is different
from the mix for Branch 2. The hypothetical point 20, however, has a deposits-to-loans
ratio of 25:15, which matches the ratio for Branch 2, but with greater output.
Furthermore, the point 20 lies on the line connecting points 1 and 3, so that
Branches 1 and 3 form the reference set for Branch 2.

In the DEA approach, we presume that an inefficient branch can improve its per-
formance by emulating one or more of the efficient branches in its reference set. In the
case of Branch 2, that would mean emulating aspects of Branches 1 and 3, the com-
ponents of its HCU. In the case of Branch 4, that would mean emulating aspects of
Branches 3 and 5.

The efficiency measure also has a geometric interpretation in Figure 5.2. The dis-
tance from the origin to the point representing Branch 4 is 92 percent of the distance
from the origin to 40. This percentage matches the efficiency of Branch 4. Similarly, the
point representing Branch 2 is located 82.8 percent of the way from the origin to 20.

Under our definition of efficiency, Branch 1 is efficient although it has far less
loan activity than Branch 3 and only minimally larger deposits. Similarly, a branch
with $1 more in deposits than Branch 1 and no loans at all would also be efficient.
That is because we can conceive of a set of weights for loans and deposits that
would make such a branch the most productive of all the branches. In particular, if

Figure 5.2. Outputs for the HCUs in Example 5.2.
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deposits were very profitable for the bank, and loans were not very profitable, then the
branch with $1 more in deposits would have a more valuable total output in terms of
profitability. Such a profitability relationship might be very unlikely, but it is still poss-
ible. Thus, when we use DEA, we deal with a theoretical notion of efficiency—based
on what is conceivable, not what is likely.

Spotting dominance in our example does not require DEA. We can simply scan
the data if we want to detect dominance. However, as the number of outputs and inputs
increases, a dominance relationship like the one between Branches 2 and 3 becomes
less likely. Consequently, direct comparisons do not reveal many inefficient DMUs,
and DEA becomes more valuable. Once we proceed beyond two outputs, geometric
analyses are difficult or impossible, and we lose the intuition that it provides. For
larger problems, we need an algebraic approach. In fact, even with two outputs, the
graphical approach is limited. Our branch bank example was simplified because iden-
tical inputs existed for all branches. If there were differences in the inputs, then the
graphical display of outputs would not convey the full comparison. In general,
DEA relies on an algebraic approach, and, as we shall see, on linear programming.

5.2. AN ALGEBRAIC PERSPECTIVE ON DEA

In order to describe a generic DEA model in algebraic terms, we let

xik ¼ ith input quantity for DMUðkÞ

y jk ¼ jth output quantity for DMUðkÞ

The x- and y-values represent given information. In our branch bank example, for
Branch 1 (or k ¼ 1), we have

x11 ¼ 1st input quantity for Branch 1 ¼ 100

y11 ¼ 1st output quantity for Branch 1 ¼ 10

y21 ¼ 2nd output quantity for Branch 1 ¼ 31

Next, we define the weights, which play the role of decisions in the model

vi ¼ weight for the ith input

u j ¼ weight for the jth output

If there were one output and one input, as in the case of milk and cows, we could
measure productivity as yk/xk and then normalize this measure to compute efficiency.
We would have no need for weights at all. When there are two outputs, as in the
example of branch banks, we need weights to calculate an aggregate value for the
outputs. In the case of loans and deposits, there could well be actual profit margins,
reflecting market prices, that we could use for weights; but in other settings, there
may not be a market price for all of the relevant outputs. For that reason, we refer
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to weights rather than to prices as a means of valuing inputs and outputs. As we shall
see, the weights are obtained from the data, that is, they are determined intrinsically.

When there is more than one output, we use Yk to denote the weighted value of
outputs. That is, we let

Yk ¼ u1y1k þ u2y2k þ u3y3k þ � � �

Suppose that in the branch bank example, the weights selected are u1 ¼ 0.2 and u2 ¼

0.3. Then the output value for Branch 1 is 0.2(10) þ 0.3(31) ¼ 11.3. Similarly, we use
Xk to denote the weighted value of the inputs, where

Xk ¼ v1x1k þ v2x2k þ v3x3k þ � � �

Suppose that in the branch bank example, we take v1 ¼ 0.1. Then the input value for
Branch 1 is 0.1(100) ¼ 10. For an arbitrary set of nonnegative weights, we can com-
pute productivity as the ratio of the weighted value of outputs to the weighted value of
inputs. With the values of u1, u2, and v1 just mentioned, the productivity measure for
Branch 1 would be 11.3/10 ¼ 1.13. With those weights, the best productivity among
the five branches is 1.30 for Branch 3. Therefore, the efficiency for Branch 1 would be
calculated as 1.13/1.3 ¼ 0.869. Later, we will constrain the weights so that they nor-
malize the measure of productivity. This means that the highest productivity measure
in the comparison is 1. With normalizing weights, we define efficiency as Ek ¼ Yk/Xk,
where the capital letters are shorthand for weighted sums.

The performance of a particular DMU is considered efficient if the performance
of other DMUs does not provide evidence that one of its inputs or outputs could be
improved without worsening some of its other inputs or outputs. In other words, the
performance is efficient if it is impossible to construct a HCU that does better.

In our notation, the subscript k refers to the kth DMU. Our approach will be to
choose a particular DMU for evaluation and to denote it with the subscript k ¼ 0.
But this same DMU will still be included among the values of k . 0.

Now we can give an outline of the steps in DEA.

† Select a particular DMU to be the focus of the analysis and refer to it as
DMU(0).

† Choose (uj, vi) so that they maximize the ratio E0. In other words, choose the
weights that are most favorable to the mix of inputs and outputs belonging to
DMU(0), but use one set of weights for evaluating all DMUs.

† Normalize the measure of productivity by requiring that Yk/Xk � 1 for all
DMUs. In other words, the value of the output can never be greater than the
value of the input. Since DMU(0) corresponds to one of the DMU(k), the
largest value E0 could achieve is 1.

† If the ratio Y0/X0 is equal to 1, then DMU(0) is classified as efficient; that is, we
have found a set of weights for which its outputs are at least as valuable as the
outputs of any other DMU would be with the same inputs.
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† If this ratio is less than 1, then DMU(0) is said to be inefficient; that is, for even
the most favorable choice of weights, there will be some other DMU, or
weighted combination of DMUs, that achieves higher productivity.

In the next section, we implement these steps using a spreadsheet model.

5.3. A SPREADSHEET MODEL FOR DEA

We can use a standard linear programming format to implement a spreadsheet model
for DEA. We begin by entering a table containing the data in the problem. Usually, this
table will have columns corresponding to inputs and outputs, and rows corresponding
to DMUs. Figure 5.3 shows this layout for the branch bank example. The decision
variables are the weights for inputs and outputs. The decision variable cells appear
below the table containing the data, in the highlighted cells C12:E12.

First, we fix the weighted value of the inputs, arbitrarily, at X0 ¼ 1. In the spread-
sheet, this equation is enforced by requiring that cell F16 must equal H16. Moreover,
because of the form of X0, it is easily expressed as a SUMPRODUCT of input weights

Figure 5.3. Model for Branch 1 in Example 5.2.
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(vi) and input values (xi0). This equality constraint is just a scaling step; we could set
the input value equal to any number we like. Having fixed the weighted input value X0

in the denominator of Y0/X0, it follows that maximizing the ratio E0 amounts to max-
imizing Y0, the weighted value of the outputs. Now, Y0 can be expressed as a
SUMPRODUCT of output weights (uj) and output values ( yj0). The value of Y0,
which plays the role of an objective function, is located in cell F13. Therefore, we
have a maximization problem in which the objective function is the weighted
output value and the weighted input value is constrained to equal 1.

Next, we adopt the convention that the efficiency of a DMU cannot exceed 1. This
convention reflects the sense that “perfect” efficiency is 100 percent, and we saw this
convention used earlier in Examples 5.1 and 5.2. This requirement is just a way of
ensuring that the value of the output can never be greater than the value of the
input. In symbols, we write Yk/Xk � 1, for every k representing a DMU, or equiva-
lently, Yk – Xk � 0. These normalizing conditions become the remaining constraints
of the model.

These steps lead to a relatively simple linear programming model. The form of the
model can be expressed as follows.

Maximize Y0

subject to:

X0 ¼ 1 scaling of the input value (one constraint)

�Xk þ Yk � 0 efficiency no greater than 1, for each DMU(k)

Figure 5.3 shows the spreadsheet for the analysis, using the standard format for an
allocation model. The objective function in this model corresponds to the output value
of Branch 1, computed by a SUMPRODUCT formula in cell F13. The equation that
fixes the value of inputs appears in row 16, and the normalizing constraints (requiring
that output values never exceed input values) can be found in rows 17–21.

The model specification is as follows

Objective: F13 (maximize)
Variables: C12:E12

Constraints: F16 ¼ H16
F17:F24 � H17:H21

When we run Solver, we obtain an objective function of 1.00, as shown in the figure,
along with the following weights,

Input Expense weight (v1) 0.01
Output Loans weight (u1) 0.00
Output Deposits weight (u2) 0.032258

With these weights, the input value is X0 ¼ 1.0 and the output value is Y0 ¼ 1.0 for
Branch 1, resulting in an efficiency of 100 percent. In the solution, cells F18:F21
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all show negative values. This means that the output value is strictly less than the input
value for each of the other DMUs. Since the input values are identical in this example,
it follows that none of the other DMUs can achieve the productivity of Branch 1 at its
most favorable weights (0, 0.032258).

Figure 5.4 shows the analysis for Branch 2. The format is the same as the format
for Branch 1, and only two changes occur. First, the objective function now contains
data for Branch 2 in row 13. Second, the coefficients for the constraint on input value
contain data for Branch 2 in row 16. (In this example, that change does not actually
alter row 16, but in other examples, it could.) Otherwise, the parameters of the
linear program remain unchanged from the analysis for Branch 1. When we run
Solver on this model, we obtain an objective function of 0.828, as shown in the
figure, along with the following weights.

Input Expense weight (v1) 0.01
Output Loans weight (u1) 0.003125
Output Deposits weight (u2) 0.03125

With these weights, the input value is X0 ¼ 1.0, and the output value is Y0 ¼ 0.828,
resulting in an efficiency of 82.8 percent. In this solution, cells F17 and F19 are

Figure 5.4. Model for Branch 2 in Example 5.2.
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zero. This means that the normalizing constraint is binding for Branches 1 and 3.
In other words, Branches 1 and 3 have efficiencies of 100 percent, even at the most
favorable weights (0.003125, 0.03125) for Branch 2.

We could construct similar spreadsheet models for the analyses of Branches 3, 4,
and 5 following the same format. However, much of the content on those worksheets
would be identical, so a more efficient approach makes sense. In Figure 5.5, we show a
single spreadsheet model that handles the analysis for all five branches. As before, the
array in rows 4–9 contains the problem data. Cell F11 contains the branch number for
the DMU under analysis. Based on this choice, two adjustments occur in the linear
programming model. First, the outputs for the branch being analyzed must be selected
for use in the objective function, in cells D13:E13. Second, the inputs for the branch
being analyzed must be selected for use in the EQ constraint, in cell C16. These selec-
tions are highlighted in bold in Figure 5.5. The INDEX function uses the branch
number in cell F11 to draw the objective function coefficients from the data array
and reproduce them in cells D13:E13. It also draws the input value from the data
array and reproduces it in cell C16. The three cells in bold format change when a differ-
ent selection appears in cell F11.

Figure 5.5. Model for any branch in Example 5.2.
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We want to solve the model in Figure 5.5 several times, once for each DMU.
To do so, we vary the contents of cell F11 from 1 to 5. Since each solution requires
a reuse of the worksheet, we save the essential results in some other place before
switching to a new DMU. In particular, we save the weights and the value of the objec-
tive function. Figure 5.6 shows a worksheet containing a summary of the five optim-
izations for the five-branch example (one from each choice of cell F11 in Figure 5.5).
The original data are reproduced in rows 4–9, and the optimal decision variables and
efficiencies appear in rows 12–17. This summary can be generated automatically with
the parameter analysis capability described in Chapter 4.

As we can see in Figure 5.6, there are three efficient branches in our example:
Branches 1, 3, and 5. Branches 2 and 4 are inefficient, with efficiencies of 82.8 percent
and 92 percent, respectively. The numerical results agree with the graphical model.
Thus, we have developed a spreadsheet prototype that implements the DEA approach.
Later, we build on this set of results and use the spreadsheet model to compute
additional information pertinent to the analysis.

Before proceeding, it is important to note that Example 5.2 remains somewhat
specialized. It has only one input dimension, and all the DMUs have identical input
levels. The example has only two output dimensions, but by taking the inputs to be
identical and by taking the outputs as two dimensional, we can depict the solution
graphically, as in Figures 5.1 and 5.2. As mentioned earlier, if the inputs were different
for all the DMUs, we would not have been able to convey the analysis graphically.
However, the spreadsheet model, in the same form as Figures 5.5 and 5.6, accommo-
dates the more general problem without difficulty.

BOX 5.1 Excel Mini-Lesson: The INDEX Function

The INDEX function in Excel finds a value in a rectangular array according to the row
number and column number of its location. The basic form of the function, as we use it
for DEA models, is the following:

INDEX(Array,Row,Column)

† Array references a rectangular array.

† Row specifies a row number in the array.

† Column specifies a column number in the array.

In the example of Figure 5.5, suppose Array ¼ C5:E9, Row ¼ F11, and Column ¼ 2.
When cell F11 contains the number 4, the function INDEX(C5:E9,F11,2) would
find the element in the fourth row and second column of the array in cells C5:E9. In this
case, the function returns the Loans output value for Branch 4, or 23. This calculation
would be suitable for cell D13.

When we work with a one-column array, we can omit the Column argument in the
INDEX function. Thus, in the worksheet, we can also use the function
INDEX(D$5:D$9,$F$11) for cell D13 and then copy that formula into cell E13.
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5.4. INDEXING

Quantitative measures of performance are not always absolute figures. Often, it is more
meaningful and more convenient to measure performance in relative terms. To create
indexed data, we assign the best value on a single input or output dimension an index
of 100, and other values are assigned the ratio of their value to the best value. In effect,
all performance values are expressed in percentages, relative to the best performance
observed.

The use of indexed data does not present difficulties for DEA. In fact, the DEA
calculations are, perhaps, more intuitive when based on indexed data because the
result tends to be optimal weights of approximately the same order of magnitude,
which may not be the case without indexing.

To illustrate how indexing works, we return to Example 5.2. When we scan the
loan values for the various branches, the highest output in the comparison comes
from Branch 5, with an output of 30. If we treat a level of 30 as the base, we can express
the loan values for each of the other branches as a percentage of Branch 5 output.
Table 5.1 summarizes the scaled values that result, for both loans and deposits.

Suppose we perform the linear programming analysis using the indexed values
instead of the original, raw data. How does the analysis change? Figure 5.7, which

Figure 5.6. Summary of the analysis for Example 5.2.
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shows the analysis of Branch 4 using indexed values, conveys the main point. The
value of the objective function remains unchanged (at 92 percent in this case), even
though the values of the decision variables are different from those in the original
model (compare Figure 5.5). This example shows that the efficiency calculation is
robust in the sense that it depends only on the relative magnitudes of the output
levels, and these can be scaled for convenience without altering the efficiency
values produced by the analysis.

Within each of the output dimensions being evaluated, only relative values matter,
so it is always possible to use raw data even when the dimensions are quite different. In
Example 5.2, the sizes of loans and deposits are of roughly the same magnitude—tens

Table 5.1. Scaled Values from Example 5.2

DMU Loans Index Deposits Index

Branch 1 10 33.3 31 100.0
Branch 2 15 50.0 25 80.6
Branch 3 20 66.7 30 96.8
Branch 4 23 76.7 23 74.2
Branch 5 30 100.0 20 64.5

Figure 5.7. Analysis of Branch 4 in Example 5.2, with indexing.
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of millions of dollars. Suppose we had used another dimension of performance, cal-
culated as the nondefault rate on commercial and residential mortgages. For this
measure, the given data might be proportions no larger than one, but it will not be a
problem to mix such data with numbers in the tens of millions, because it is only rela-
tive levels, within a performance dimension, that really matter in DEA. As a result, we
do not have to worry about scaling the data. Nevertheless, it is sometimes advan-
tageous to use indexing because it leads to some comparability in the weights selected
by the optimization model.

5.5. FINDING REFERENCE SETS AND HCUs

We identify an efficient DMU by solving the linear program and finding a value of
1 for the objective function. By contrast, an optimal value less than 1 signifies that
the DMU is inefficient. The first main result in DEA is classifying the various
DMUs as either efficient or inefficient. For the efficient DMUs, there may not be
much more to say. As we shall see later, advanced variations of the analysis can dis-
criminate among the efficient DMUs. Initially, however, these are not analyzed
further. Instead, attention focuses on the inefficient DMUs. If we solve a version of
the linear program and discover that a DMU is inefficient, the analysis proceeds by
identifying the corresponding reference set and describing the associated HCU. In
order to carry out this part of the analysis, we can draw on the shadow price infor-
mation in the Sensitivity Report.

To illustrate how the analysis proceeds, we move next to an example with multiple
inputs and multiple outputs. The simplest such case would be a two-input, two-output
structure, as in the example of evaluating a chain of nursing homes.

EXAMPLE 5.3 Hope Valley Health Care Association

The Hope Valley Health Care Association owns and operates six nursing homes in adjoining
states. An evaluation of their efficiency has been undertaken, using two inputs and two outputs.
The inputs are staffing labor (measured in average hours per day) and the cost of supplies
(in thousands of dollars per day). The outputs are the number of patient-days reimbursed
by third-party sources and the number of patient-days reimbursed privately. A summary of
performance data is shown in the table below.

Staff hours Supplies Reimbursed Privately paid
DMU per day per day patient days patient days

Facility 1 150 0.2 14,000 3500
Facility 2 400 0.7 14,000 21,000
Facility 3 320 1.2 42,000 10,500
Facility 4 520 2.0 28,000 42,000
Facility 5 350 1.2 19,000 25,000
Facility 6 320 0.7 14,000 15,000

B
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A spreadsheet model for the analysis of the six DMUs is shown in Figure 5.8, which
displays the specific analysis for Facility 5. In a full set of six optimization runs for this
model, we find that the first four units are all efficient, while Facilities 5 and 6 are inef-
ficient. The efficiencies are summarized in cells G6:G11.

Next, we illustrate the further analysis of Facility 5. The first step is to re-run
Solver for Facility 5 and obtain the Sensitivity Report, which is shown with some
reformatting in Figure 5.9. The information we need can be found in the
Constraints section of the Sensitivity Report, in the rows corresponding to the normal-
izing constraints of the original model, which have right-hand-side constants of zero.
The specific values we seek are the shadow prices corresponding to the six normaliz-
ing constraints, as highlighted in Figure 5.9.

To proceed, we copy the shadow prices for the normalizing constraints and paste
them into column J of the spreadsheet, so that they match up with the corresponding
constraint rows, as shown in Figure 5.8. The next step is to identify which shadow
prices are positive; the DMUs corresponding to those make up the reference set. In
Figure 5.8, we can observe that the shadow prices are positive in normalizing con-
straints corresponding to Facilities 1, 2, and 4. This means that Facilities 1, 2, and 4
form the reference set for Facility 5. The results are summarized as follows.

Shadow Reference
DMU price set

Facility 1 0.2000 Yes
Facility 2 0.0805 Yes
Facility 3 0.0000
Facility 4 0.5383 Yes
Facility 5 0.0000
Facility 6 0.0000

Having identified the reference set for Facility 5, we next construct a HCU. In
cells C26:F26 we lay out a row resembling the original row of data for Facility 5.
The entry in cell C26 is calculated as the SUMPRODUCT of the shadow prices
and the six values of the first input (staff hours) from the array of input data. This cal-
culation yields the value 342.125, as shown below. This number represents the staff
hours of the HCU.

Staff hours Shadow
DMU per day price

Facility 1 150 0.2000
Facility 2 400 0.0805
Facility 3 320 0.0000
Facility 4 520 0.5383
Facility 5 350 0.0000
Facility 6 320 0.0000 SUMPRODUCT ¼ 342.125
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Figure 5.8. Analysis for Facility 5 in Example 5.3.

Figure 5.9. Sensitivity report for Facility 5 in Example 5.3.
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The specific formula in cell C26 is ¼SUMPRODUCT($J$19:$J$24,C6:C11).
Next, this calculation is copied to cells D26:F26, using absolute addresses for the
shadow prices in column J, as shown in Figure 5.8. The resulting numbers provide
the description of an HCU for Facility 5.

0:2000 (Facility 1 Data) ¼ 0:2000 (150 0:20 14 3:5)

0:0805 (Facility 2 Data) ¼ 0:0805 (400 0:70 14 21:0)

0:5383 (Facility 4 Data) ¼ 0:5383 (520 2:00 28 42:0)

HCU Data ¼ (342 1:17 19 25:0)

In particular, the outputs of the comparison unit, which are (19, 25), match the outputs
of Facility 5 precisely. However, the inputs (342.125, 1.173) are slightly smaller than
the inputs of Facility 5. In other words, the comparison unit achieves the same outputs
as Facility 5, but with lower input levels. By its construction, the comparison unit has
inputs and outputs that are weighted averages of those for the facilities in the reference
set. Thus, a weighted combination of Facilities 1, 2, and 4 provides a target for Facility
5 to emulate.

The analysis of Example 5.3 shows how the shadow prices can be used as weight-
ing factors to construct the HCU. In general, the comparison unit has outputs that are at
least as large as the outputs of the inefficient unit being analyzed and inputs that are no
larger than the inputs of the unit being analyzed. In this case, the actual inputs for
Facility 5 are staff hours of 350 and a supply level of 1.2. The analysis suggests
that efficient performance, as exemplified by Facilities 1, 2, and 4, would allow
Facility 5 to produce the same outputs with inputs of only 342.125 staff hours and
a supplies level of 1.173.

How could Facility 5 achieve these efficiencies? DEA does not tell us. It merely
suggests that Facilities 1, 2, and 4 would be reasonable benchmarking targets for
Facility 5. Then, by studying differences in technology, procedures, and management,
Facility 5 might be able to identify and implement changes that could lead it to
improved performance.

In Example 5.3, Facilities 1–4 are all efficient, but only Facilities 1, 2, and 4 form
the reference set for Facility 5. An exploration of the analysis for Facility 6 leads to a
similar conclusion: Its reference set also consists of Facilities 1, 2, and 4. Although
Facility 3 is efficient, it does not appear in any reference sets. Evidently, it is not a
facility that Facility 5 or 6 should try to emulate. We might guess that this is the
case because its output mix is quite different.

5.6. ASSUMPTIONS AND LIMITATIONS OF DEA

Although we have relied on the term “efficient,” it would be more appropriate to use
the term relatively efficient—that is, the productivity of a DMU is evaluated relative to
the other units in the set being analyzed. DEA identifies what we might call “best prac-
tice” within a given population. However, that does not necessarily mean that the
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efficient units compete well with DMUs outside the population. Thus, we have to resist
the temptation to make inferences beyond the population under study.

As mentioned earlier, DEA works well when there is some ambiguity about the
relative value of outputs. No a priori price or other judgment about the relative value
of the outputs is needed. Because prices are not given, it should not be obvious
what output mix would be best. (This applies to inputs as well.) DEA performs its
evaluation by assuming weights that are as favorable as possible to the DMU being
evaluated. However, DEA may not be very useful in a situation where a distinct hier-
archy of strategic goals exists, especially if one goal strongly influences performance.

Some applications of DEA have run into complaints that the output measures may
be influenced by factors that managers cannot control. In response, variations of the
DEA model have been developed that can accommodate uncontrollable factors.
Such a factor can be added by simply including it in the model; there is no need to
specify any of its structural relationships or parameters. Thus, a factor that is neither
an economic resource nor a product, but is instead an attribute of the environment,
can easily be included. An example might be the convenience of a location for a
branch bank, which could be treated as an input.

One of the technical criticisms often raised about DEA relates to the use of com-
pletely arbitrary weights. In particular, the basic DEA model allows weights of zero on
any of the outputs. (Refer to Figure 5.3 as an illustration.) A zero-valued weight in the
optimal solution means that the corresponding input or output has been discarded in
the evaluation. In other words, it is possible for the analysis to completely avoid a
dimension on which the DMU happens to be relatively unproductive. This may
sound unfair, especially since the inputs and outputs are usually selected for their stra-
tegic importance, but it is consistent with the goal of finding weights that place the
DMU in the best possible light. In response, some analysts suggest imposing a
lower bound on each of the weights, ensuring that each output dimension receives
at least some weight in the overall evaluation. Choosing a suitable lower bound is dif-
ficult, however, because of the flexibility available in scaling performance data.
(Recall the discussion of indexed values earlier.) A more uniform approach is to
impose a lower bound on the product of performance measure and weight. For any
input dimension, the product of input value and weight is sometimes called the virtual
input on that dimension. Similarly, for any output dimension, the product of output
value and weight is sometimes called the virtual output. The virtual outputs are the
components of the efficiency measure, and we can easily require that each component
account for at least some minimal portion of the efficiency, such as 10 percent. In the
analysis of Branch 1 (see Figure 5.10), we can compute the virtual outputs for each
performance dimension in cells D14 and E14. Then, we add constraints forcing
these values to be at least 10 percent (as specified in cell F14). With these lower
bounds added, it is not possible to place all the weight on just one dimension. As
shown in Figure 5.10, the imposition of a 10 percent lower bound for the contribution
from each dimension reduces the efficiency rating for Branch 1 to 92.7 percent
when the model is optimized. As the example illustrates, when we impose additional
requirements, we may turn efficient DMUs into inefficient ones.

A related criticism is that the weight may be positive but still quite small on
an output dimension that is known to be strategically important. In this situation, it
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is possible to add a constraint to the model that will force the virtual output of one
important measure to be greater than the virtual output other measures. These kinds
of additional constraints may improve the logic, but they sacrifice transparency in
the model.

Another technical criticism relates to the fact that a DEA evaluation often pro-
duces a number of efficient DMUs, and it would be satisfying to have a tie-breaking
mechanism for distinguishing among the efficient units. One way to break ties is to
omit the normalizing constraint for the kth DMU when it is the subject of evaluation.
When we do so, we tend to get some efficiencies above 1.0, and we are much less
likely to get ties in the performance metric. Another response is more complicated
but perhaps more equitable. The evaluation of the kth DMU produces a set of optimal
weights that are, presumably, as favorable as possible to unit k. Suppose we call these
“price set k.” When we evaluate DMU k, we compute the value of its outputs under
each of the price sets (price set 1, price set 2, etc.). Then we average the output
values obtained under the various price sets and rank the DMUs based on their average
values over all price sets. The average value on which the DMUs are ranked is called
the cross-efficiency. This method makes ties less likely but involves more
computation.

Although we started with a small one-input/one-output example and then moved
on to larger examples, it does not follow that a DEA model should be built with as
many inputs and outputs as possible. In fact, there is a good reason to limit the

Figure 5.10. Analysis of Branch 1 with lower bounds.
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number of variables. A large number of outputs and inputs has a tendency to cause
nearly every unit to appear efficient. Therefore, a judicious choice of outputs and
inputs retains the power of DEA but tends to limit the number of DMUs that attain
the maximum efficiency. The literature recommends an ideal number of DMUs of
two or three times the total number of inputs and outputs. In practice, it makes
sense to limit consideration to those inputs and outputs that are broadly considered
to be of strategic importance to the units being evaluated.

The DEA model accommodates multiple inputs and outputs and makes no
assumption about the functional form relating outputs to inputs. In other words, any
type of production function is permissible. However, the efficiency measure itself
and the construction of a HCU both involve some assumptions. First, the comparison
unit is defined by assuming that weighted averages of efficient units are feasible oper-
ating possibilities. In other words, there are no major “lumpy” relationships in the pro-
duction function. Second, the comparison unit is interpreted as the output potential
that could be achieved if the unit under consideration were to maintain its mix of
inputs and outputs. Here, DEA assumes constant returns to scale. More advanced vari-
ations of the DEA model allow for alternative assumptions about returns to scale.

SUMMARY

The DEA model represents a fifth type of linear programming model, along with allocation,
covering, blending, and network models covered in Chapters 2 and 3. In a strict sense, the
DEA model is a variation on the allocation type, but because its use is so specialized, we
have given it separate treatment here.

For the purposes of spreadsheet implementation, the DEA model should be built with the
kind of flexibility exemplified by Figure 5.5. That is, the analysis of every DMU can be done in
the same worksheet, simply by updating a single cell. A documented analysis is likely to need a
separate location to keep a summary of the linear programming results, as illustrated in the work-
sheet of Figure 5.6. In addition, to identify and analyze the properties of an HCU, we also need
to obtain the Sensitivity Report, making use of its shadow price information as shown in
Figure 5.8.

The DEA model was introduced in the 1970s, and for many years, it was a topic known
mainly to a small group of researchers. Their work extended the theory underlying DEA,
made progress enhancing the computational aspects of the analysis, and reported on selected
applications. Over a period of many years, corporations and consultants have slowly discovered
DEA and begun to use it more frequently. As application catches up with theory, the DEA model
promises to find more significant use in the future.

EXERCISES

5.1. Evaluating Manufacturing Efficiency You have been asked to measure the relative
efficiency of five competing manufacturers of apple juice. Each of the firms in the
study controls the process of growing and harvesting apples, producing the juice, and deli-
vering the juice to regional distributors. You have decided that your study should
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recognize one input, which is the acreage devoted to apple trees, and one output, which is
the number of gallons of juice delivered last year, in thousands.

Acres Gallons

Firm 1 100 10
Firm 2 110 15
Firm 3 122 20
Firm 4 115 23
Firm 5 96 30

(a) Calculate the productivity for each firm.

(b) Calculate the efficiency of each firm.

(c) Which firm, if any, would you recommend as a benchmarking target for Firm 3?

5.2. Expanding Manufacturing Efficiency Returning to the firms you studied in the pre-
vious exercise, you discover that they now make two products—apple juice and apple
sauce. The firms still effectively use only one important resource, which is the apples
grown in their own orchards, but they have different marketing strategies and hence
their product mixes differ. The relevant data are shown in the table below.

Acres Juice Sauce

Firm 1 100 10 31
Firm 2 110 15 25
Firm 3 122 20 30
Firm 4 115 23 23
Firm 5 96 30 20

(a) Perform a DEA evaluation for this set of firms, listing the efficiency for each firm.

(b) For each of the inefficient units, find the reference set and calculate the inputs and
outputs for a corresponding HCU.

(c) Compare the results with the analysis of the branch bank example in the chapter.
What are the differences in the given data? What are the differences in results?

5.3. Hope Valley Health Care (Revisited) Revisit Example 5.3 and revise the given data
set so that all input and output measures are indexed. That is, each value on a particular
input or output dimension is assigned its percentage relative to the highest value in the set.
Using indexed data, redo the analysis.

(a) Which nursing homes are efficient?

(b) What are the efficiencies of the inefficient nursing homes?

(c) For each of the inefficient units, find the reference set and calculate the indexed inputs
and outputs for a corresponding HCU. Then convert these indexed values to the orig-
inal scale.

5.4. Evaluating Hospital Efficiency DEA has been used to measure the relative efficiency
of a group of hospitals. This study involved seven teaching hospitals; data on three input
measures and four output measures are provided in Table 5.2.
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(a) Perform a DEA evaluation for this set of units, listing the efficiency for each hospital.

(b) Consider the performance of Hospital D. What is the interpretation of the efficiency
measure for Hospital D?

(c) Which hospitals would you recommend Hospital D consider emulating to improve its
efficiency?

(d) What are the inputs and outputs of the HCU for Hospital D?

5.5. Evaluating Restaurant Efficiency Celia’s Tacqueria is a chain of five Mexican restau-
rants in Florida. A DEA evaluation is being conducted to make comparisons of the differ-
ent locations. Input measures for the restaurants include weekly hours of operation, full-
time equivalent staff, and weekly supply expenses. Output measures of performance
include average weekly contribution to profit, market share, and annual growth rate.
Data for the input and output measures are shown in Table 5.3.

(a) Perform a DEA evaluation for this set of units, listing the efficiency and the virtual
outputs for each of restaurants.

(b) For each of the inefficient units, find the reference set and calculate the inputs and
outputs for a corresponding HCU.

5.6. Evaluating Branch Bank Efficiency A large national bank is interested in evaluating
the performance of several of its branches. For this purpose, it has collected data for a

Table 5.2. Inputs and Outputs for Seven Hospitals

Hospital

Input measures

Full-time Supply Bed-days
equivalent expense available

nonphysicians ($1000s) ($1000s)

A 310.0 134.60 116.00
B 278.5 114.30 106.80
C 165.6 131.30 65.52
D 250.0 316.00 94.40
E 206.4 151.20 102.10
F 384.0 217.00 153.70
G 530.1 770.80 215.00

Output Measures

Patient-days Patient days
(65 or older) (under 65) Nurses Interns

Hospital (000s) (000s) trained trained

A 55.31 49.52 291 47
B 37.64 55.63 156 3
C 32.91 25.77 141 26
D 33.53 41.99 160 21
E 32.48 55.30 157 82
F 48.78 81.92 285 92
G 58.41 119.70 111 89
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DEA study (Table 5.4). Three inputs have been selected for the study: personnel hours,
operating expenses, and floor space. Three outputs have also been selected; these count
the number of transactions in different areas of the bank. In particular, transactions are
tracked in Deposits and Capital Transfers, Credit Processing, and Foreign Receipts.

(a) Perform a DEA evaluation for the branches, listing the efficiency for each branch.

(b) For each of the inefficient units, find the reference set.

5.7. Modifying the Efficiency Measure in DEA DEA does not distinguish among efficient
DMUs because they are assigned efficiencies of 1.0 by the standard procedure. One sug-
gestion for modifying the procedure is the following. For each efficient DMU, repeat the
analysis (i.e., solve the linear programming problem) without retaining the DMU being
evaluated in the set of constraints. In this form of the model, an efficient DMU may
turn out to have efficiency greater than 1.0.

Analyze Exercise 5.4 using this approach, calculating the revised efficiency rating
for each of the DMUs.

(a) List the hospitals in order of their revised efficiencies.

(b) For each hospital, compute how much change occurs between the efficiency rating in
the standard procedure and the revised efficiency rating.

5.8. Modifying the Efficiency Measures in DEA DEA does not distinguish among effi-
cient DMUs because they are assigned efficiencies of 1.0 by the standard procedure.
One suggestion for modifying the procedure is the following. For each efficient DMU,
repeat the analysis (i.e., solve the linear programming problem) without retaining the
DMU being evaluated in the set of constraints. In this form of the model, an efficient
DMU may turn out to have efficiency greater than 1.0.

Table 5.3. Inputs and Outputs for Five Restaurants

Restaurant

Input measures

Hours of
operation

FTE
staff

Supplies
($)

Jacksonville 96 16 850
Daytona 110 22 1400
Gainesville 100 18 1200
Ocala 125 25 1500
Orlando 120 24 1600

Output measures

Weekly % Market % Growth
Restaurant profit ($) share rate

Jacksonville 3800 25 8.0
Daytona 4600 32 8.5
Gainesville 4400 35 8.0
Ocala 6500 30 10.0
Orlando 6000 28 9.0
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Analyze Exercise 5.5 using this approach, calculating the revised efficiency rating
for each of the DMUs.

(a) List the restaurants in order of their revised efficiencies.

(b) For each restaurant, compute how much change occurs between the efficiency rating
in the standard procedure and the revised efficiency rating.

5.9. DEA Efficiency with an Additional Constraint Review Exercise 5.4. Add constraints
that require virtual outputs of at least 2 percent.

(a) With the additional constraints, calculate the efficiencies of the hospitals. Comparing
the original analysis, what patterns do you see?

(b) Repeat the analysis with a minimum of 10 percent on the virtual outputs.

(c) What are the advantages and disadvantages of using the additional constraint?

5.10. DEA Efficiency with an Additional Constraint Review Exercise 5.5. Add constraints
that require virtual outputs of at least 10 percent.

(a) With the additional constraints, calculate the efficiencies of the restaurants.
Comparing the original analysis, what patterns do you see?

(b) Repeat the analysis with a minimum of 20 percent on the virtual outputs.

(c) What are the advantages and disadvantages of using the additional constraint?

5.11. DEA Efficiency with Side Constraints Review Exercise 5.5. After looking at the
analysis, your corporate client proposes a refinement. Since the corporation has empha-
sized market share in other divisions, the following constraint is suggested: the virtual

Table 5.4. Inputs and Outputs for 17 Branch Banks

Branch
code

Inputs Outputs

Labor Expenses Space Deposits Credit Foreign

1 34515 6543 591 268836 9052 11242
2 49960 11830 550 475144 15697 15967
3 20652 3464 427 133020 3696 6937
4 49024 7603 478 355909 12918 16594
5 36923 8723 830 240679 4759 8087
6 28967 4606 474 211183 3188 5621
7 28452 7425 182 147364 5302 40618
8 45911 8013 790 130161 12070 115022
9 26890 14662 447 156828 15102 1336
10 47376 7576 764 297925 16797 12030
11 57913 12035 875 462603 2698 13232
12 43477 7255 1109 300976 12299 24368
13 49786 10909 405 233178 6248 4701
14 30045 4264 479 110976 8675 19796
15 56579 8895 840 363048 6370 10788
16 43824 12690 801 130219 20417 28133
17 33823 4143 381 146804 47508 21856
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Table 5.5. Data on 20 Finnish Universities

Input Outputs

ID Costs Inheritances Rebates Warrants Collections

1 9.13 7.525 34.114 21.958 3.840
2 13.60 8.301 23.270 35.966 8.632
3 5.76 10.909 13.392 11.527 4.931
4 11.24 16.621 36.817 27.552 9.522
5 15.57 22.809 95.776 23.611 12.266
6 5.65 1.777 0.156 1.314 39.011
7 21.60 15.107 70.958 54.216 10.809
8 8.57 7.919 48.688 14.032 5.923
9 6.01 7.066 36.304 5.445 2.936
10 8.02 8.858 43.610 13.774 4.274
11 9.93 8.999 36.852 20.661 8.151
12 7.90 8.278 45.222 6.191 5.327
13 5.15 6.763 18.704 10.620 3.540
14 6.42 8.984 13.600 12.319 3.752
15 5.94 7.686 25.906 8.242 2.483
16 8.68 7.227 16.965 17.581 6.274
17 4.86 3.356 23.672 4.298 2.482
18 10.33 8.558 30.540 17.770 8.005
19 21.97 12.234 92.020 29.530 14.763
20 9.70 7.674 41.162 13.272 4.503
21 6.34 8.168 16.613 8.264 5.047
22 7.70 7.884 15.749 14.502 3.034
23 5.99 5.666 27.546 5.243 3.410
24 5.20 6.923 12.613 4.298 3.040
25 6.36 7.352 23.510 5.744 4.207
26 8.87 6.456 38.100 9.645 3.093
27 10.71 13.642 23.862 14.631 4.631
28 6.49 7.675 17.972 8.269 2.756
29 15.32 15.341 55.415 16.361 12.530
30 7.00 8.369 14.918 9.883 4.328
31 10.50 9.608 37.910 13.493 5.035
32 10.88 10.648 36.962 14.248 4.844
33 8.52 8.967 24.672 11.841 3.753
34 7.61 6.111 31.734 7.657 2.872
35 10.91 9.778 42.725 12.169 4.657
36 9.72 7.713 5.897 14.600 9.251
37 12.63 11.082 41.586 16.420 5.647
38 11.51 9.066 28.491 16.284 5.962
39 6.22 6.627 14.667 7.703 3.083

(Continued)
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output for market share should be at least 150 percent of the virtual output from either
profit or growth.

(a) With the side constraints added, calculate the efficiencies of the five restaurants.

(b) What are the advantages and disadvantages of using the side constraint?

5.12. DEA with Cross-Efficiencies Review Exercise 5.5. After looking at the analysis, your
corporate client proposes yet another refinement to break ties in the efficiency ratings. The
evaluation of the kth DMU produces a set of “optimal prices” that are as favorable as poss-
ible to unit k. Suppose we call these “set k prices.” Now, to evaluate DMU k, compute the
value of its efficiency (output value divided by input value) under each of the price sets
(set 1 prices through set 5 prices, in this case). Then, average the five efficiency values.
This average value is called the cross-efficiency.

(a) Rank the DMUs based on cross-efficiency.

(b) What are the advantages and disadvantages of using the cross-efficiency measure?

5.13. Evaluating Universities A study of Finnish universities is aimed at determining an effi-
ciency ranking. Two inputs are used: the university’s annual budget and the selectivity

Table 5.5. Continued

Input Outputs

ID Costs Inheritances Rebates Warrants Collections

40 5.29 3.958 20.416 1.961 1.835
41 8.78 6.558 31.720 8.596 4.831
42 13.50 4.769 26.469 20.877 4.170
43 12.60 6.680 30.280 9.085 19.449
44 8.10 8.103 9.708 8.534 7.502
45 9.67 6.004 19.460 10.708 8.033
46 12.37 11.253 28.500 12.528 6.741
47 9.50 8.674 23.542 8.992 3.664
48 11.47 10.300 15.576 13.740 6.458
49 11.78 12.221 14.325 10.100 5.021
50 12.57 10.432 18.306 16.387 3.924
51 50.26 32.331 150.000 45.099 19.579
52 12.70 9.500 22.391 14.900 5.803
53 13.30 7.530 21.990 14.655 8.324
54 5.60 3.727 12.208 5.388 2.837
55 11.75 5.198 13.280 13.618 7.104
56 8.47 6.149 19.453 6.505 3.300
57 8.36 5.959 17.110 4.655 3.077
58 11.07 7.247 16.338 8.686 6.620
59 10.38 7.761 16.440 6.014 3.313
60 11.83 5.347 12.410 12.238 4.567
61 12.71 6.320 13.632 8.530 5.161
62 11.19 6.578 10.900 3.523 3.456
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Table 5.6. Data on 62 Municipal Departments

Input Outputs

ID Costs Inheritances Rebates Warrants Collections

1 9.13 7.525 34.114 21.958 3.840
2 13.60 8.301 23.270 35.966 8.632
3 5.76 10.909 13.392 11.527 4.931
4 11.24 16.621 36.817 27.552 9.522
5 15.57 22.809 95.776 23.611 12.266
6 5.65 1.777 0.156 1.314 39.011
7 21.60 15.107 70.958 54.216 10.809
8 8.57 7.919 48.688 14.032 5.923
9 6.01 7.066 36.304 5.445 2.936
10 8.02 8.858 43.610 13.774 4.274
11 9.93 8.999 36.852 20.661 8.151
12 7.90 8.278 45.222 6.191 5.327
13 5.15 6.763 18.704 10.620 3.540
14 6.42 8.984 13.600 12.319 3.752
15 5.94 7.686 25.906 8.242 2.483
16 8.68 7.227 16.965 17.581 6.274
17 4.86 3.356 23.672 4.298 2.482
18 10.33 8.558 30.540 17.770 8.005
19 21.97 12.234 92.020 29.530 14.763
20 9.70 7.674 41.162 13.272 4.503
21 6.34 8.168 16.613 8.264 5.047
22 7.70 7.884 15.749 14.502 3.034
23 5.99 5.666 27.546 5.243 3.410
24 5.20 6.923 12.613 4.298 3.040
25 6.36 7.352 23.510 5.744 4.207
26 8.87 6.456 38.100 9.645 3.093
27 10.71 13.642 23.862 14.631 4.631
28 6.49 7.675 17.972 8.269 2.756
29 15.32 15.341 55.415 16.361 12.530
30 7.00 8.369 14.918 9.883 4.328
31 10.50 9.608 37.910 13.493 5.035
32 10.88 10.648 36.962 14.248 4.844
33 8.52 8.967 24.672 11.841 3.753
34 7.61 6.111 31.734 7.657 2.872
35 10.91 9.778 42.725 12.169 4.657
36 9.72 7.713 5.897 14.600 9.251
37 12.63 11.082 41.586 16.420 5.647
38 11.51 9.066 28.491 16.284 5.962
39 6.22 6.627 14.667 7.703 3.083
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rating (for which higher is better). Four outputs are used: the number of graduates (receiv-
ing their primary degree), the number of advanced graduates (receiving a post-graduate
degree), a progress index (measured against a standard rate of progress toward the corre-
sponding degree), and a completion index (measuring the propensity of students to finish
their degree requirements). The data are provided in Table 5.5.

(a) Perform a DEA evaluation for the universities, listing the efficiency for each.

(b) How many of the 20 universities are efficient?

5.14. Evaluating Municipal Departments An effort is underway to evaluate several munici-
pal departments in the UK that collect taxes related to property. One input is used: the
annual cost of operating the municipal office. Four outputs are measured, relating to
different activities carried out in each of the departments. The data are shown in Table 5.6.

(a) Perform a DEA evaluation for the departments, listing the efficiency for each unit.

(b) How many of the 62 DMUs are efficient?

Table 5.6. Continued

Input Outputs

ID Costs Inheritances Rebates Warrants Collections

40 5.29 3.958 20.416 1.961 1.835
41 8.78 6.558 31.720 8.596 4.831
42 13.50 4.769 26.469 20.877 4.170
43 12.60 6.680 30.280 9.085 19.449
44 8.10 8.103 9.708 8.534 7.502
45 9.67 6.004 19.460 10.708 8.033
46 12.37 11.253 28.500 12.528 6.741
47 9.50 8.674 23.542 8.992 3.664
48 11.47 10.300 15.576 13.740 6.458
49 11.78 12.221 14.325 10.100 5.021
50 12.57 10.432 18.306 16.387 3.924
51 50.26 32.331 150.000 45.099 19.579
52 12.70 9.500 22.391 14.900 5.803
53 13.30 7.530 21.990 14.655 8.324
54 5.60 3.727 12.208 5.388 2.837
55 11.75 5.198 13.280 13.618 7.104
56 8.47 6.149 19.453 6.505 3.300
57 8.36 5.959 17.110 4.655 3.077
58 11.07 7.247 16.338 8.686 6.620
59 10.38 7.761 16.440 6.014 3.313
60 11.83 5.347 12.410 12.238 4.567
61 12.71 6.320 13.632 8.530 5.161
62 11.19 6.578 10.900 3.523 3.456
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Case: Branch Performance at Nashville National Bank1

In 1993, Ann Maruchek, Chief Operating Officer of Nashville National Bank (NNB), had been
at the helm during a heady time of rapid expansion that saw NNB grow from three to ten
branches in five years. Unfortunately, that expansion led to some personnel problems. Many
of the branch managers began complaining about discrepancies in pay, titles, and resources,
and they focused on the branch performance appraisal process. One older branch manager
who had received an unfavorable performance review threatened to sue NNB for age discrimi-
nation if he was fired.

Determining some measure of bank branch performance was essential. Without some
agreed upon performance measure, varied decisions such as branch expansion/closure, man-
agerial promotion, and resource allocation would otherwise be left to the “feel” of senior man-
agement. At the time, Ann gave all branch manager performance reviews herself. Being a very
“hands-on” type of manager, she felt that she was in an informed position to pass judgment on
each branch. She based her judgments on what she felt each branch should have accomplished
during the past year, given their location, past performance, and so on, but she had no particular
benchmark for this purpose.

During most of the 1980s, when there were only three branches and she knew each manager
well, her informal style seemed to work well. With the complexity of a larger branch network
combined with the political factions that arose within NNB, it became clear that a more formal
approach was necessary. Under her informal evaluation system, many managers felt that the
negotiating and presentation skills of branch managers could be a more important factor in
their performance appraisals than the actual performance of their branch.

Branch Growth at Nashville National Bank
NNB was founded in 1970 as a largely retail bank serving upper-middle class customers in
Nashville. NNB had only three branches within Davidson County when it merged with a
failed thrift, Belle Meade S&L, in 1989 and gained three more branches. In 1991, NNB pur-
chased another failing institution, Farmer’s Bank, which added one branch. Last year NNB
and People’s Bank merged, bringing the total branches in the NNB system to 10.

Each of the acquisitions was made because the banks were considered “good buys,” rather
than for strategic considerations. Outwardly, few changes were made for the new branches. The
employees of the purchased bank were kept on at their current pay scale and title. Few procedural
changes were implemented to make them conform to NNB’s methods. For instance, loan appli-
cation and review were different from branch to branch. At the extreme, only the former
Farmer’s Bank branch made agricultural loans.

The major changes NNB made were to the backroom operations. The most significant
change was to the computer systems. The disparate systems were integrated to ensure that
accounts could be accessed in real time from any branch in the NNB system. This was greatly
appreciated by their customers, as many customers preferred to process transactions at a variety
of branches in the NNB system, not just the particular branch that opened their account.

The acquired branches catered to different market segments than NNB traditionally
embraced. Belle Meade S&L focused on retail banking for the same upper-middle income cus-
tomers. Farmer’s Bank was established to provide both retail and commercial services for agri-
cultural purposes. As agriculture declined in importance in the local economy, the market share

1This case was written by Professor Richard Metters of Emory University and is used with permission.
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of Farmer’s commensurately decreased. People’s Bank provided retail services to a basically
middle class clientele.

Assessing Branch Productivity
Although it is clearly necessary to have some measure of branch performance, there is consider-
able disagreement in the industry about what should be measured and how to measure it. Several
different measurement and reporting techniques are currently used by different banks to evaluate
branches. Ann decided to compare the formal branch performance evaluation systems that peer
banks use to see whether one would fit at NNB.

Measuring productivity is often a simple matter for many individual jobs, but can become
complex for branches with multiple goals. For example, if teller A handles 200 transactions per
day whereas teller B handles 250 transactions, teller B is more productive, other things equal.
However, if those tellers handle different types of transactions, then the raw data given is no
longer sufficient, and the transactions must be weighted according to standard times. If teller
A’s 200 transactions were judged to require 8 standard hours whereas teller B’s 250 transactions
required only 7.5 standard hours, then teller A would be considered more productive.

Evaluating branch productivity is more complicated than evaluating individual tellers.
There are multiple strategic directives, such as customer satisfaction, profitability, growth of
the customer base, and so on, that are all measured differently and cannot easily be combined
into a single measure. But even when profitability is the only goal, there are often multiple
measures that should be consulted.

For example, assume that profit is derived from only loans and deposits. Due to a lack of
match-funding2 the net interest earned on the loan and deposit portfolios can vary widely. In
some years, loans are highly profitable whereas deposits are marginally so, in other years the
reverse is true. If measured on profit alone, branches that are very good at generating checking
accounts may be viewed as excellent branches one year and poor performers the next—even if
they are performing at a sustained level of excellence in generating deposits. Consequently,
gross profit may not always be an appropriate performance measure. Because of these difficul-
ties and others, branch effectiveness can be difficult to assess.

Branch Managers Revolt
The problem of evaluating branches was brought to the forefront by a cabal of the former
People’s Bank managers. It was already known that they had lower ranking than other
branch managers, but they had believed that this was due to the merger process and that salaries
were relatively equal. When they inadvertently discovered the wide gaps in salaries between
branch managers (see Exhibit 5.1) they were furious. They demanded that Ann bring their
titles and salaries up to the level of the other managers.

Clay Whybark, President of NNB, was against any pay increases. He believed that the
former People’s branches were not producing as well as the others and that their managers
should be paid accordingly. Realizing that his “feel” was not going to be good enough to placate
his branch managers, he instructed Ann to come up with an objective method of determining
how well the branches were doing.

2“Match funding” refers to how a bank funds its loans and deposits of different maturities. As a simplified
example, for a bank to loan money for a 30-year mortgage, it can get the money for the loan from the
overnight federal funds market or a long-term deposit account. If it funds a long-term loan of 10 percent from
a long-term deposit of 5 percent, the loan is match funded and is guaranteed to be profitable. If it funds the
long-term loan from the short-term overnight market, there is a danger that the overnight rates may rise
substantially over the course of the loan, making the loan unprofitable.
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Measuring Branches: Available Techniques
Ann narrowed the choice of alternatives to three commonly used techniques, branch profitabil-
ity, branch ranking and branch goals, and one emerging technique that has been used only
recently: data envelopment analysis.

† Branch Profitability. Many banks evaluate branches by fashioning financial statements
for each branch. Interest and fee income from accounts is credit to the branch where the
accounts originated. This income is netted against interest costs and non-interest
expenses to determine a profitability level (see Exhibit 5.2).

† Ranking Reports. An alternative is to evaluate branches according to performance in
specific areas separately, rather than using a single profitability number.

† Goal Reports. Pre-set goals are negotiated with each branch manager in a variety of
areas. Performance evaluation is based on the percentage of goal attained. The categories
used for goal reporting would be similar to those used in ranking reports.

† Data Envelopment Analysis (DEA). Formally, DEA is a linear programming technique
for measuring the relative efficiency of facilities where each facility has more than one
desired output or needed input. In practical terms, DEA is a measurement tool for
businesses that have many different sites performing similar tasks, when a single overall
measure, such as profit or ROI, is not sufficient. DEA combines numerous relevant out-
puts and inputs into a single number that represents productivity, or “efficiency.”

The DEA Study
Ann decided to use DEA to evaluate the NNB branch system. She initially used four outputs and
three inputs (Exhibit 5.3). The outputs chosen were branch profit, a deposit transaction index, a
new account index and an existing account index. Later, at the specific request of the Farmer’s
branch manager, Ann also included agricultural loan balances as an output.

Branch profitability was obtained from standard accounting reports. From these reports,
Ann calculated the average monthly profit for the last three years and used that figure directly.
Each of the other measures was a composite of several items. The transaction index multiplied
the number of transactions handled at a branch by the standard time required to perform the

EXHIBIT 5.1 Branch Manager Salaries

Branch Branch manager Branch manager
Original bank number title salary

NNB 1 Vice President (V.P.) $48,000
NNB 2 Vice President $52,500
NNB 3 Senior V.P. $65,000
Belle Meade 4 Vice President $50,000
Belle Meade 5 Senior V.P. $60,000
Belle Meade 6 Vice President $46,000
Farmer’s 7 Vice President $52,000
People’s 8 Assistant V.P. $38,000
People’s 9 Assistant V.P. $36,000
People’s 10 Assistant V.P. $34,000
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transaction. For example, handling a routine deposit takes 20 seconds, but writing a cashier’s
check takes 3 minutes. The branch with the largest amount of standard time was given an
index value of 100 and the other branches were indexed accordingly.

Similar procedures were used for new and existing accounts. A certificate of deposit for
$10,000 at 5.5 percent interest is far less profitable than a regular savings account with a
$10,000 balance at 3.0 percent. Consequently, indices using approximate profitability ratings
were used to weight new and existing account activity.

For inputs, Ann used the average monthly personnel and total branch expenses over the
past three years. Also, some locations were clearly better than others and branches located in

EXHIBIT 5.2 Sample Branch Profitability Statement ($000)

Interest income from loans� 384.2
Federal funds sold�� 300.0
Total interest income 384.2

Interest expense from deposits� (185.5)
Federal funds purchased�� 0(23.0)
Total interest expense (208.5)

Provision for credit losses (26.5)

Net interest income after
Provision for credit losses 149.2

Noninterest income
Deposit account fees 22.2
Loan fees 12.1

Total noninterest income 32.3

Noninterest expense
Salaries (35.0)
Benefits (7.4)
Occupancy (4.1)
Other expense (18.2)

Total noninterest expense (64.7)

Net income before support expenses 116.8

Specific support expense��� (32.6)

Net income before general expense 84.2

General support expense���� (22.4)

Net income 61.8

�Income/expense from loan and deposit accounts initially opened by branch.
��If more deposits are taken in than loans given out, the excess is sold on the Federal Funds (FF) market. If
excessive loans are granted, the money is borrowed from the FF market.
���Expenses of central administration directly related to branch activity.
����Expenses of central administration not directly related to any specific branch (e.g., president’s salary).
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prime spots would reasonably be expected to perform better, so a “location desirability” estimate
was included as an input.

According to Ann’s calculations, nearly every branch was perfectly efficient and of the
three that had less than 100 percent efficiency, the lowest efficiency was 92 percent (see
Exhibit 5.4 for a summary). The inescapable conclusion was that the former People’s branch
managers were right—they were underpaid.

When Ann presented her method and conclusions at the next Executive Operating
Committee meeting, she was met with a less than enthusiastic response. When she finished, a
stony silence ensued and Ann noticed that Clay was starting down at the desk with his head
in his hands.

Aleda Roth, Senior Vice President and head of the check-processing center, was the first to
speak. “This is garbage. Clay, give me three days and I’ll give you something you can use.”
When Ann began to protest, Clay interrupted, “Wait a minute, Ann. Let’s hear what Aleda
has to say.”

EXHIBIT 5.4 Branch Efficiencies and Output Factor Weightings

Branch Efficiency

Existing Agricultural
Branch
profit

Transaction
index

New
account

account loans
index index

1 1.00 0.00 0.00 1.00 0.00 0.00
2 1.00 0.00 0.76 0.24 0.00 0.00
3 1.00 1.00 0.00 0.00 0.00 0.00
4 0.92 0.00 0.84 0.08 0.00 0.00
5 0.98 0.98 0.00 0.00 0.00 0.00
6 1.00 0.23 0.77 0.00 0.00 0.00
7 1.00 0.00 0.00 0.00 0.00 1.00
8 1.00 0.00 1.00 0.00 0.00 0.00
9 1.00 0.00 1.00 0.00 0.00 0.00
10 0.99 0.03 0.95 0.00 0.00 0.00
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Chapter 6

Integer Programming:
Binary Choice Models

An integer programming model is a linear program with the requirement that some or
all of the decision variables must be integers. In principle, we could distinguish
between linear and nonlinear programs with integer variables, but the latter are extre-
mely difficult and generally beyond the capability of Solver. We focus on the role of
integer variables in what would otherwise be linear programming models. Thus far,
we have not paid much explicit attention to whether the decision variables take on inte-
ger values. In Chapter 3, we pointed out that in special network models, integer sol-
utions are guaranteed. In other cases, we often encountered integer solutions without
explicitly requiring integers, so there seemed to be no need to discuss integrality. In
still other cases, we seemed to be content with fractional solutions, especially when
the decision variables were scaled. In this chapter, the role of integer values takes
center stage.

This chapter first describes how Solver handles integer programs. Next, we
explore the basic capital budgeting model as a way of introducing binary variables
and developing some intuition for the effects of integer requirements on decision vari-
ables. Then, in the remainder of the chapter, we look at models characterized by binary
choice. In these optimization models, all decisions are of a yes/no variety. Other uses
of binary variables are covered in the next chapter.

Before we discuss how to handle the integer requirement using Solver, we return
briefly to the subject of integers in linear programs. Recall that one of the three con-
ditions of linearity is divisibility—that is, the fact that fractional values make sense for
decision variables. Consider Example 2.1, the allocation model for chairs, desks, and
tables. As it turned out, the optimal solution contained no chairs, 160 desks, and 120
tables, so that the decisions happened to all be integers. Suppose instead that the
problem had been posed with only 1800 assembly hours available, rather than the
2000 of the base case. Then the optimal product mix would have been 13.33 chairs,
220 desks, and no tables. Is the fractional number of chairs meaningful?

At first glance, it may seem to make no sense to talk about one-third of a chair in
the product mix. Certainly, if we were interested in the tactical implications of the

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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solution, it would not make sense for us to produce one-third of a chair to help meet
demand (or to count on the profit that the fractional chair would generate). However,
there are two interpretations of the fraction that do make sense. For one, we should be
willing to round off. That is, we might interpret the optimal solution as 13 chairs and
220 desks. This solution would use less capacity than the optimal solution but would
clearly be feasible. Another possibility might be to round up the number of chairs to
14, leaving desks at 220. Although this rounded-up solution violates the precise state-
ment of capacity, the violation is on the order of one tenth of a percent in the case of
assembly capacity and half a percent in the case of machining capacity. Since we are
unlikely to “know” the given information in this problem to a precision of one part in a
thousand, we may well accept the rounded-up product mix as an implementable
solution.

A second interpretation is also possible. We might want to think of the model as
representing a routine weekly planning model that specifies conditions in a typical or
average week. In that context, when we encounter a figure like 13.33 in the optimal
mix, we could interpret it as a long-run average. That is, the fractional value prescribes
a three-week cycle with 13 chairs in weeks 1 and 2, and 14 chairs in week 3. Thus,
rounded-off values and planning averages provide us with two interpretations that
might allow us to tolerate fractional answers to linear programs when fractions seem
impractical in literal terms. In addition, we might be primarily interested in under-
standing the economic priorities in the optimal solution (as discussed in Chapter 4),
and the details of the decision variables might be of secondary importance. Since
linear programming models are usually guides to decisions, rather than fully auto-
mated substitutes for decision makers, we might well be satisfied with noninteger sol-
utions to most of our linear programs. Still, there are some cases where only integers
will suffice. In those cases, the requirement of integer values is crucial, and it influ-
ences how we use Solver.

Broadly speaking, there are perhaps three types of integer programming models.
The first type is essentially a linear program but with an inflexible requirement that
some or all of the variables must be integer. For example, a decision variable might
correspond to the number of times in a production schedule that a piece of equipment
is shut down for a maintenance check. In this instance, a value such as 2.59 will not
suffice; we must have an integer. For this purpose, we designate some variable in the
model as an integer variable.

The second type is a model in which some of the key decisions are of the yes/no
variety. For example, a decision variable might correspond to whether or not we pur-
chase a parcel of land. In this instance, we model our decision with a variable that is
allowed to be only zero or one. We refer to such a decision as a binary choice, because
there are only two alternatives, and we use binary variables to represent the decision.
Binary variables are integer variables that are limited to the values zero or one. In this
chapter, we mainly focus on models involving binary choice.

The third type is a model that contains certain relationships that we might not
normally think of as linear. For example, suppose that we are contemplating a plant
expansion in which we may add a new manufacturing line to the factory. If we proceed
with the expansion, then we can produce a particular component internally. If we don’t
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expand, then we will have to buy the component from an external vendor. In other
words, our make/buy alternatives are contingent on the decision to expand. Such a
contingency is an example of a logical or qualitative constraint, but we can capture
it in a model if we use binary variables to represent the decision to expand and the
decision to produce components in house. Other kinds of qualitative constraints can
often be represented using binary variables, and in the next chapter we focus on
models involving logical constraints.

6.1. USING SOLVER WITH INTEGER REQUIREMENTS

To illustrate how to use Solver for integer programming, let’s consider the staffing
problem faced by a call center. Daily requirements for staff are usually developed
from studies of congestion in the service system. Then an optimization model helps
determine how large a staff is needed to cover the staffing requirements.

EXAMPLE 6.1 Callum Communications

Callum Communications runs a small call center that operates seven days a week. Callum
requires a specified minimum number of employees to be at work each day, to provide the
necessary level of customer service. Under union regulations, employees at the call center
must all work full-time schedules, which means five consecutive workdays and two days off
per week. Furthermore, employees whose regular schedules include a weekend day receive a
pay premium. Specifically, employees who work five weekdays are paid $400 per week.
Employees who work one of the weekend days are paid $440, and employees who work both
of the weekend days are paid $470. The minimum daily requirements for workers are described
in the following table.

Day Sun Mon Tue Wed Thu Fri Sat

Requirement 16 18 18 17 13 8 5

Callum’s management wishes to minimize the cost of salaries paid to the workforce while meet-
ing the staffing requirements. B

At the call center, seven different work shifts are possible under union rules.
Each shift starts a five-day work period on a particular day. For example, suppose we
use SU to represent the number of employees who start work on Sunday, MO for the
number who start work on Monday, and so on. These variables can make sense only if
their values are integers. The constraints require that the number of employees
assigned to work a given day must be at least as large as the daily minimum. For
example, the number working on Thursday (SU + MO + TU + WE + TH) must be
greater than or equal to 13, and a similar constraint applies for each of the other
days of the week. In addition, the total salary cost for a week plays the role of the
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objective function. The algebraic model, shown below, is a variation on the staff-sche-
duling model introduced in Chapter 2.

Minimize z = 440SU +400MO +440TU +470WE +470TH +470FR +470SA

subject to

SU +WE +TH +FR +SA ≥ 16

SU +MO +TH +FR +SA ≥ 18

SU +MO +TU +FR +SA ≥ 18

SU +MO +TU +WE +SA ≥ 17

SU +MO +TU +WE +TH ≥ 13

+MO +TU +WE +TH +FR ≥ 8

+TU +WE +TH +FR +SA ≥ 5

Figure 6.1 shows the complete spreadsheet model. It is also a variation of the
spreadsheet model for staff scheduling introduced in Chapter 2. When we treat this
model as a linear programming problem, the model specification is as follows.

Objective: I8 (minimize)
Variables: B5:H5
Constraints: I11:I17 ≥ K11:K17

As shown in Figure 6.1, Solver produces a solution containing some fractions (e.g.,
3.667 employees starting on Monday) and a total cost of $8656.67.

Figure 6.1. Spreadsheet model for Example 6.1.
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The application of Solver to integer programming models, once they are formu-
lated, is relatively straightforward. Solver treats the requirement that a variable must
be integer as an additional constraint. Along with the familiar constraint types ≤,
≥, and ¼, the drop-down menu in the Add Constraint window also permits int and
bin. The int constraint designates a variable to be integer valued, while the bin con-
straint designates a variable to be either 0 or 1 (binary valued). To produce an integer
solution in Example 6.1, we add a constraint that designates the decision variables to
be integers, as shown in Figure 6.2. The specification of the model in the task pane is
shown in Figure 6.3, where we can see the explicit designation of integer variables.

Figure 6.2. Declaring integer variables in Example 6.1.

Figure 6.3. Model specification for Example 6.1.
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Once we build the model and designate particular variables as integer or binary,
the next step is to examine the options in the Integer group of the Engine tab on the task
pane. The key option is the Integer Tolerance option, which should normally be set to
zero. At some other setting, such as 0.05, Solver is guaranteed to find a solution that is
no worse than 5 percent away from the optimum, as measured by the objective func-
tion. Clearly, we would prefer to find the very best solution, and this calls for an Integer
Tolerance parameter of zero. However, in some large models, a tight Integer Tolerance
level may require the solution procedure to take a great deal of time. Therefore, we
sometimes keep the level at 0.05 while we are debugging a large model, and we
leave it at that level if we find that solution times are prohibitively long otherwise.
If Solver can locate a solution at the 0.05 level in a reasonable amount of time, we
can experiment further by lowering the parameter toward zero.

With the integer variables designated and the Integer Tolerance option set, Solver
produces an optimal solution, shown in Figure 6.4, with a total cost of $8790. On the
surface, at least, there is no intuitive reason why we would have anticipated this result
based on the solution to the linear program. It is not, for example, a rounded-off ver-
sion of the optimal solution. Thus, by using the integer programming capability in
Solver, Callum can meet its staffing requirements with minimum salary cost.

As suggested by this example, integer programming models look just like linear
programming models, except for the fact that certain variables are constrained to be
integer valued. The differences occur within Solver, not in the spreadsheet model.
Moreover, finding a solution with Solver simply requires the user to take two
additional steps beyond the typical procedure for solving linear programs—that is,
designating integer variables and setting the Integer Tolerance parameter. When the
only role of integers in a model is to avoid fractional values in what otherwise
would be a normal linear program, then the formulation principles we covered in

Figure 6.4. Optimal integer solution to Example 6.1.
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Chapters 2 and 3, along with the int constraint, are likely to suffice. That was the case
in Example 6.1.

In some cases, such as the call center model, all of the variables are constrained to
be integers. This type of model is sometimes called a pure integer program. In other
cases, certain variables may be integers, but others are allowed to be noninteger. A
model containing both kinds of variables is called a mixed integer program. Using
Solver, the only difference between these two cases is the set of variables designated
by the int constraint.

At the level of building models for use with Solver, integer programming may
seem to be a minor technical extension of what we can already do with linear program-
ming. However, as we explore the formulation of integer programs using binary vari-
ables in this chapter and the next, a very different picture emerges. The opportunity to
use binary variables provides access to a class of models that is actually very different
from linear programming.

The solution algorithm within Solver for handling integer programs is generically
known as a branch and bound procedure. At the end of this chapter, we take a look at
how such a procedure works.

6.2. THE CAPITAL BUDGETING PROBLEM

A binary variable, which takes on the values 0 or 1, can represent a yes/no decision—
that is, a decision that represents a choice between taking an action and not taking it.
We sometimes think in terms of discrete projects, where the decision to undertake the
project is represented by the value 1 and the decision to forego the project is
represented by the value 0. A classical example arises in conjunction with the capital
budgeting problem, as illustrated by the Newton Corporation.

EXAMPLE 6.2 The Newton Corporation

Division A of the Newton Corporation has been allocated $40 million for capital projects this
year. Managers in Division A have examined various possibilities and have proposed five pro-
jects for the capital budgeting committee to consider. The projects cover a variety of activities
and functional areas, and there is just one of each type. The projects are listed below.

P1 Renovate the production facility for greater efficiency.
P2 License a new technology for use in production.
P3 Expand advertising by naming a stadium.
P4 Purchase land and construct a new headquarters building.
P5 Introduce a new product to complement the current line.

Each project has an estimated net present value (NPV), and each requires a capital expenditure,
which must come out of the budget for capital projects. The following table summarizes the pos-
sibilities, as they have been provided to the committee, with all figures in millions of dollars.
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Project P1 P2 P3 P4 P5

NPV 2.0 3.6 3.2 1.6 2.8
Expenditure 12 24 20 8 16

The committee would like to maximize the total NPV from projects selected, subject to a $40-
million limit on capital expenditures. This $40-million constraint makes it impossible to under-
take all five projects; a subset of the five must be selected. B

The problem facing the Newton Corporation can be posed as an allocation
model with one constraint, as shown below with objective function and constraint
scaled to represent millions of dollars.

Maximize z = 2.0P1 +3.6P2 +3.2P3 +1.6P4 +2.8P5
subject to

12P1 +24P2 +20P3 +8P4 +16P5 ≤ 40

A spreadsheet model for this problem is shown in Figure 6.5. (A feasible, but
suboptimal set of choices is displayed.) If we treat the model as if it were a simple
linear program, we can specify the problem as follows.

Objective: G8 (maximize)
Variables: B5:F5
Constraints: G11 ≤ I11

In the discussion that follows, we elaborate on the development and interpretation of the
integer programming model as it is derived from the linear programming model. Our
purpose is to develop some intuition for binary variables in optimization models,
and we won’t elaborate in the same way for the other modes we introduce later.

Figure 6.5. Linear program for Example 6.2.
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The optimal NPV in the linear program for Example 6.2 appears to be $8 million,
as shown in Figure 6.6, but the solution would require the selection of project P4 five
times. However, none of the projects can be implemented more than once. In particu-
lar, it is not possible to buy the same parcel of land and build new headquarters five
times; obviously, that activity can be done only once.

To prevent any project from being implemented several times, we can require
each of the variables to be no greater than 1. If we optimize the model as a linear
program, imposing an upper bound of 1 on each of the variables, the maximum
NPV comes to just over $7 million, as shown in Figure 6.7, but the optimal mix of
projects is P1, P4, P5, and one-fifth of P3. However, none of the projects can be
done in a fractional amount. In the case of P3, we cannot pay for a fraction of a stadium
name; the project is indivisible and must be either accepted or rejected in its entirety.
No part-way adoption of any of the projects is possible. Therefore, we must use binary
variables, as all-or-nothing variables, to represent choices.

Figure 6.6. Optimal solution to the linear program for Example 6.2.

Figure 6.7. Optimal solution to the linear program for Example 6.2 with ceilings of 1.
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Having seen why a purely linear programming approach is unsuitable for the
situation at the Newton Corporation, we add the constraint that each variable is
binary. The model specification is as follows.

Objective: G8 (maximize)
Variables: B5:F5
Constraints: G11≤ I11

B5:F5 ¼ binary

The optimal solution achieves a NPV of $6.8 million, achieved by accepting
projects P1, P3, and P4, as shown in Figure 6.8. This figure represents the largest
value that can be achieved with the five candidate projects from the allocation of a
$40 million budget.

The capital budgeting model captures a well known allocation problem, in which
each candidate project is either included in the solution once or not at all. Finding sol-
utions can be difficult because of the “lumpy” nature of the projects as they consume
resources in the budget constraint. Let’s take a closer look at the nature of our solution.

In a problem with one constraint on expenditures, the intuitive approach would be
to rank the projects by the ratio of value achieved to capital expenditure required, or in
this case, the ratio of NPV to capital expense. If we calculate those ratios, we obtain the
following numbers.

Project P4 P5 P1 P3 P2

NPV 1.6 2.8 2.0 3.2 3.6
Expense 8 16 12 20 24
Ratio 0.200 0.175 0.167 0.160 0.150

Figure 6.8. Optimal integer solution for Example 6.2.
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In the table, we have ordered the projects with the highest ratio on the left. Therefore,
using ratios to represent priorities, the intuitive rule would suggest adopting projects
P4, then P5, and then continuing in order until the budget is consumed. If we followed
that logic, we would adopt P4 and P5, but their expenditures of $36 million would
leave no room in the budget for other projects, and the total NPV would be
$4.4 million. However, by judiciously departing from the priority ordering, we can
reject P5 and instead adopt P1 and P3, thus achieving a full use of the capital
budget and a NPV of $6.8 million. The lumpiness of capital expenses means that
we can’t adopt fractional projects and follow our intuitive sense of priorities.
Instead, we have to account for the implications of each combination of expenditures
in terms of the budget remaining when we examine which combinations of projects
make sense. The number of combinations is large enough that it becomes tedious to
write down all the possibilities. In large problems, that task would be prohibitively
time consuming, yet an integer programming model can provide us with optimal sol-
utions readily.

The capital budgeting model illustrates decisions that are of the yes/no variety.
In fact, all variables in the capital budgeting model are of this type. In other integer
programming models, some of the variables might correspond to yes/no decisions
(and thus to binary variables), while other variables resemble the familiar types of
decisions that we have seen in other linear programming models.

6.3. SET COVERING

The covering model is one of the basic linear programming model types. As intro-
duced in Chapter 2, the model contains covering decisions corresponding to variables
that are assumed to be divisible. However, when the decisions are of the yes/no var-
iety, we have a binary-choice version of the covering model known as the set-covering
problem. To describe how this model might arise, consider the situation at the
Metropolis Police Department.

EXAMPLE 6.3 Metropolis Police Department

The police department in the city of Metropolis, has divided the city into 15 patrol sectors so
patrol cars can respond quickly to service calls. Until recently, the streets have been patrolled
overnight by 15 patrol cars, one in each sector. However, severe budget cuts have forced the
city to eliminate some patrols. The chief of police has mandated that each sector should be
covered by at least one unit located within the sector or in an adjacent sector.

The simplified map (Figure 6.9) depicts the 15 patrol sectors in the city. Any pair of sectors
that share a boundary are considered to be adjacent. (Sectors 4 and 5 are adjacent, but not Sectors
3 and 5.) In addition, Sectors 7 and 14 are not accessible from each other because their boundary
is the site of the Goose Pond Dam, while Sectors 9 and 13 are not mutually accessible due to the
terrain of Moose Mountain, which is located at their boundary.

Having analyzed the map, the chief wants to know what number of patrol units will be
required to provide service to the city’s 15 sectors. B
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Although the map is the basic source of data for this problem, we can use it to
create an adjacency array for modeling purposes. This array is shown in Figure 6.10.
In the figure, the numbered rows and columns correspond to the various sectors. An
entry of 1 appears in row i and column j if sectors i and j are adjacent. (Each sector
is considered adjacent to itself.)

A model for minimizing the required number of patrols can be constructed around
the adjacency array by defining binary variables as follows.

yj = 1 if a patrol is assigned to sector j

yj = 0 otherwise

Then the objective function—the total number of patrols—can be expressed as
the sum of the yj values. In the model of Figure 6.11, this sum is represented as the
SUMPRODUCT of the decision row and a row containing all 1s. To formulate con-
straints, suppose we focus on row i in the array, which corresponds to sector i. The
SUMPRODUCT of this row and the decisions yields the number of patrols that can
service county i. In the problem, we require coverage from at least one patrol for
every row. In words, our model takes the following form.

Minimize z = the number of patrols

subject to

Patrols servicing sector i ≥ 1, ( for all i = 1, 2, . . . ,15)

In algebraic terms, we can let aij represent the adjacency data in the array of
Figure 6.10. That is, aij ¼ 1 if sectors i and j are adjacent and aij ¼ 0 if not. Then

Figure 6.9. Sector map for Example 6.3.
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we can write

Minimize z =
∑

yj

subject to
∑

j
aijyj ≥ 1, ( for all sectors i = 1, 2, . . . ,15)

In the spreadsheet of Figure 6.11, we have positioned the constraint information
immediately to the right of the data array because the rows of the array give rise to con-
straints. We then specify the model as follows.

Objective: R7 (minimize)
Variables: C5:Q5
Constraints: R11:R25 ≥ T11:T25

C5:Q5 ¼ binary

Figure 6.11 shows the optimal solution, obtained with the linear solver and an Integer
Tolerance of 0, which calls for assigning patrols to Sectors 3, 7, and 10. By using an
integer programming model, the police department can provide service to Metropolis
while minimizing the number of patrols needed.

The generic set covering problem involves the selection of objects to meet given
coverage requirements, where selection is a matter of binary choice. Each column in
the constraints of the model (refer to Figure 6.11 as an example) corresponds to an
object and the coverage it provides. When the coverage is expressed with 0s and 1s
(the constraint coefficients in a column), we can think of the 1s as defining a coverage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0
2 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0
3 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
4 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0
5 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
7 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
8 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0
9 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0

10 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0
11 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
12 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
13 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0
14 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1
15 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

Figure 6.10. Adjacency array for Example 6.3.
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set (i.e., the set of rows in which 1s appear). Thus, the selection of objects is equivalent
to the selection of sets, and the problem is to choose the minimum number of sets
and still provide the required coverage. This interpretation gives rise to the name
set-covering problem.

6.4. SET PACKING

As we saw in the previous section, the covering model of linear programming leads to
an analog in binary-choice programming. In a similar fashion, the allocation model of
linear program leads to another analog. This model contains allocation constraints
rather than covering constraints; otherwise, it resembles the set-covering model. To
describe how this model might arise, consider the expansion problem faced by the
Happy Landings Motel Company.

EXAMPLE 6.4 Happy Landings Motels

The Happy Landings Motel has been a successful one-of-a-kind business in its original location.
Its new owner has decided to replicate the motel at several locations and form a small chain.
More expansion will follow if this first phase is a success. The new owner has identified nine

Figure 6.11. Optimal solution for Example 6.3.
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potential locations where a motel might be located. However, some of these locations are within
30 miles of each other, and the owner prefers to separate motels in the chain by at least 30 miles
to avoid cannibalizing demand. The following information about location conflicts has been
obtained from a map.

Potential
site

Potential sites
within 30 miles

1 2
2 1, 5, 7
3 5, 6, 8, 9
4 6, 7
5 2, 3, 6, 8
6 3, 4, 5, 7
7 2, 4, 6
8 3, 5
9 3

The new owner wants to build motels on as many sites as possible, while adhering to the 30-mile
requirement. B

Again, the raw data for this problem comes from a map, organized according
to the list given in Example 6.4. For modeling purposes, it’s convenient to convert this
information into a conflict array. This array is shown in Figure 6.12, as part of the ulti-
mate model. In the figure, the numbered rows and columns correspond to the various

Figure 6.12. Optimal solution for Example 6.4.
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motel sites. An entry of 1 appears in row i and column j if sites i and j are within 30
miles of each other.

A model for maximizing the number of nonconflicting motel sites can be con-
structed around the conflict array by defining binary variables

yj = 1 if a motel is assigned to site j

yj = 0 otherwise

Then the objective function—the total number of motels—can be expressed as the
sum of the yj values. In the model of Figure 6.12, this sum is represented as the
SUMPRODUCT of the decision row and a row containing all 1s. To formulate con-
straints, suppose we focus on row i in the array, which corresponds to site i. The
SUMPRODUCT of this row and the decisions yields the number of assigned sites
(possibly including site i itself) that conflict with site i. In the problem, we require
the number of conflicts to be at most 1, for any site. In words, our model takes the
following form.

Maximize z = the number of sites

subject to

Sites in conflict with i ≤ 1, ( for all i = 1, 2, . . . , 9)

In algebraic terms, we can let aij represent the conflict data in the array of
Figure 6.12. That is, aij ¼ 1 if sites i and j are within 30 miles and aij ¼ 0 if not.
Then we can write

Maximize z =
∑

yj

subject to
∑

j

aijyj ≤ 1, ( for all sites i = 1, 2, . . . , 9)

In the spreadsheet of Figure 6.12, we specify the model as follows.

Objective: L7 (maximize)
Variables: C5:K5
Constraints: L10:L18 ≤ N10:N18

C5:K5 ¼ binary

Figure 6.12 shows the optimal solution, obtained with the linear solver and an Integer
Tolerance of 0, which calls for choosing sites 1, 4, and 8. By using an integer program-
ming model, the new owner can open as many new motels as the 30-mile limit allows.

The generic version of this problem involves the selection of objects that avoid
given conflict possibilities, with selection represented by binary choice. Each
column in the constraints of the model (refer to Figure 6.12 as an example) corre-
sponds to an object and the conflicts it generates. When the conflicts are expressed
with 0s and 1s (the constraint coefficients in a column), we can think of the 1s as
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defining a conflict set (i.e., the set of rows in which 1s appear.) Thus, the selection of
objects is equivalent to the selection of sets, and the problem is to “pack in” the maxi-
mum number of sets without creating conflicts. This interpretation gives rise to the
name set-packing problem.

6.5. SET PARTITIONING

As another example of a binary choice model, we consider a matching problem. The
term “matching” refers to identifying pairs—that is, associating one object in a popu-
lation with exactly one other object. This structure differs from the assignment pro-
blem of Chapter 3, which calls for matching an object in one population, such as
products, to an object in another population, such as factories. Consider the exam-
scheduling problem as it arises at Oxbridge College.

EXAMPLE 6.5 Oxbridge College

Oxbridge College faces the problem of devising an exam schedule at the end of every term. By
tradition, the exam period lasts four days, and exams are scheduled in the morning of each day.
In other words, there are four available exam periods. To create an exam schedule, the college
registrar assigns courses to exam days according to the course meeting time. Thus, all courses
that meet Monday at 9am are assigned the same exam day. Eight distinct meeting times occur
in the college calendar, and the registrar wants to assign two to each of the four exam days.
However, when two times are assigned to the same exam day, some students may have a
time conflict because they are enrolled in courses that meet at those two times. Special arrange-
ments must then be made for such students. The registrar’s office has an information system that
can determine, for any pair of class times, how many students are taking courses at both times.
With this information, the registrar would like to devise an exam schedule that makes the
number of exam conflicts as small as possible because that minimizes the number of cases in
which special arrangements have to be made. For the current term, the conflict numbers are
displayed in the following table.

Time T2 T3 T4 T5 T6 T7 T8

T1 20 15 18 14 16 11 8
T2 26 32 29 19 14 18
T3 40 32 29 26 20
T4 35 31 23 26
T5 31 26 27
T6 27 31
T7 26

B

It’s not necessary to fill in the entire array because of symmetry: the number
of conflicts between Ti and Tj is the same as the number of conflicts between Tj and Ti.
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Although it is convenient to present the data in a half-array, it can also be presented in a
horizontal layout, as in the standard linear programming format. (See rows 3 and 4 of
Figure 6.13.)

The essential decision in this problem is a binary choice for matching. The binary
decision variables xij are defined as follows.

xij = 1 if class time Ti and class time Tj are assigned to the same exam day.

xij = 0 otherwise

Because symmetry allows us to work with just half the conflict array, we need to define
the xij variables only for i , j, which comes to 28 pairs. Then we can write the objec-
tive function as a SUMPRODUCT in the form

∑
cijxij, where cij represents the number

of conflicts occurring when Ti and Tj are assigned to the same exam day, and where
the sum is taken over all 28 potential assignments. Because the quantity cij contributes
to this sum only when xij ¼ 1, the objective function measures the total number of con-
flicts in the exam schedule. Constraints are needed to make sure that each class time is
assigned exactly one match. The algebraic model takes the following form.

Minimize z = 20x12 + 15x13 + 18x14 + · · · + 26x78

subject to

x12 + x13 + x14 + x15 + x16 + x17 + x18 = 1

x12 + x23 + x24 + x25 + x26 + x27 + x28 = 1

x13 + x23 + x34 + x35 + x36 + x37 + x38 = 1

x14 + x24 + x34 + x45 + x46 + x47 + x48 = 1

x15 + x25 + x35 + x45 + x56 + x57 + x58 = 1

x16 + x26 + x36 + x46 + x56 + x67 + x68 = 1

x17 + x27 + x37 + x47 + x57 + x67 + x78 = 1

x18 + x28 + x38 + x48 + x58 + x68 + x78 = 1

Figure 6.13. Spreadsheet model for Example 6.5.
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Figure 6.13 shows the spreadsheet model. The layout follows the standard linear
programming layout introduced in Chapter 2. By transforming the layout of the con-
flict data from the original half-array into one long row in Figure 6.13, we facilitate the
standard layout.

The model specification is the following.

Objective: A10 (minimize)
Variables: B7:AC7
Constraints: AD13:AD20 ¼ 1

B7:AC7 ¼ binary

After entering this information, we set Integer Tolerance to 0 and run the linear solver.
The minimal number of conflicts is 76, as shown in the figure, and the optimal pairings
are Time 1 with Time 5, Time 2 with Time 6, Time 3 with Time 8, and Time 4 with
Time 7. By using an integer programming model, Oxbridge can thus limit the number
of exam conflicts to the minimum possible level.

The binary-choice model in Figure 6.13 resembles the set covering model and the
set packing model, except for the constraint type. Again, we can think of columns as
sets, and in this case, the 1s in each column identify the pair of objects in the corre-
sponding match. The problem involves choosing a full match—that is, a collection
of pairs such that each object appears exactly once in the collection. The “exactly
once” requirement means that the sets selected must partition the population of objects
into mutually exclusive and exhaustive subsets. For that reason, this problem type is
often called a set-partitioning problem.

In Example 6.5, the number of class times is exactly equal to twice the number of
exam days. More generally, the number of class times could be slightly less than twice
the number of exam days, and a similar model could be used. For example, if there
were six class times rather than eight, then only two pairings would be needed, and
two of the class times would be unpaired. To accommodate this condition, we
could state the model constraints as LT inequalities and add a constraint to ensure
that at least two pairings took place.

Although Example 6.5 occurs in the setting of scheduling exams, the same kind
of matching model can be used to schedule class meetings (or training courses, or
conference sessions, etc.) when there are at most two items per time period. Several
additional conditions may apply as well, but the basic structure of such problems
often corresponds to the matching problem.

6.6. PLAYOFF SCHEDULING

An application area for integer programming that has received increasing attention
lately is the scheduling of sports teams in professional leagues. Although basic guide-
lines exist for the creation of a “balanced” schedule, a good deal of flexibility remains,
and several specific considerations come into play in determining an “optimal” sche-
dule. As an example, a relatively new league in Latin America has just begun to exam-
ine the possibility of optimized scheduling.
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EXAMPLE 6.6 The Latin American Soccer Association

Soccer is a popular spectator sport in Latin America, and as the year draws to a close, attention is
focused on the Latin American Soccer Association (LASA), which administers the annual
league competition. LASA also pays attention to trends in attendance, income from television
contracts, and the interactions between soccer games and the broader national culture. One of its
activities is drawing up a schedule for the season-ending playoff series.

The LASA league consists of 12 teams which compete against each other during a 24-week
regular season. Then, after a one-week break, the playoffs begin. Six teams—three from each
division—qualify for the playoffs based on their regular season performance. In the playoffs,
each team must play each of the other qualifying teams. After those games have been played,
the teams with the best record in each division meet in the championship game.

The playoff games are played on Saturdays, and each team plays every week. Several sche-
dules can be constructed that allow the playoffs to be completed in five weeks, but the LASA
Executive Board has determined that some schedules are preferable to others. In particular,
they have noticed that attendance is relatively greater when two teams of the same division
play each other (reflecting intradivision rivalries) and when games are relatively later in the
schedule (reflecting the importance of the later games in determining the ultimate division
winners). The Board has concluded that total attendance will be maximized if intra-division
games are played as late as possible in the schedule. B

When we examine the LASA problem closely, we can identify two basic
constraints: (1) each team must play every other team, and (2) each team plays exactly
one game each week. As a consequence, the schedule must require at least five weeks.
When we turn to the objective, we observe that each team plays two intradivision
rivals. Therefore, at best, the intradivision rivalries can be placed in the last two
weeks of the schedule. Normally, it is not too difficult to devise a five-week schedule
containing the 15 required games, even with pencil and paper. However, it may not be
so easy to determine whether all intradivision rivalries can be placed in the last two (or
even three) weeks. That’s where an integer programming model can be useful.

To build the model, we rely on a binary-choice variable.

xjkt = 1 if teams j and k meet in week t of the schedule

0 otherwise

We need to define these xjkt variables for the 15 distinct pairs of teams corresponding
to j , k, as well as for each of the five weeks. This specification gives us a total of
75 binary variables. Then it is straightforward to write the constraints of the problem.
For the one-game-per-week constraint, we write

∑6

k=j

x jkt = 1 for each team j and week t (6.1)

For the play-everyone-else constraint, we write

∑6

t=1

x jkt = 1 for each pair of teams ( j, k) (6.2)
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The model contains 30 constraints of type (6.1) and 15 constraints of type (6.2), for a
total of 45 constraints.

For the objective function, let’s assume we wish to maximize the following
expression.

Maximize z =
∑5

t=1

∑6

k=j

c jktx jkt

This expression represents a sum containing 75 terms. In selecting the coefficients cjkt,
we first need a mechanism that favors intradivision games over the other games. An
easy way is to associate a zero coefficient with each pairing of teams from different
divisions. Then, for the intradivision games, we need a mechanism that favors later
weeks over earlier weeks. For this purpose, we could associate a positive objective
function coefficient equal to the week number for each variable. Thus, we define
the following coefficients

cjkt = t if intradivision teams j and k meet in week t of the schedule

0 otherwise

Perhaps the notion of “later week” deserves a closer look. In our assignment of coeffi-
cient values, we would permit the model to place two intradivision games in week 4
(making a contribution of 8 to the objective) rather than placing one intradivision game
in week 5 (making a contribution of just 5). However, if we do not find that trade-off
desirable, we could use an alternative scheme.

The spreadsheet model for the LASA problem is not difficult to build, but we
must keep its size in mind: 45 constraints and 75 variables. For reasons of readability,
Figure 6.14 shows just the upper left portion of the model. The variables appear in row
15, with rows 13 and 14 containing labels for the variables. Specifically, the pair ( j, k)
appears in row 13 and the week t appears in row 14. The first set of constraints, corre-
sponding to (6.1) appears in rows 18–47, and the second set, corresponding to (6.2)
appears in rows 49–63. Row 48 reproduces the team pair in row 13 for easier
reference.

Figure 6.15 shows the entire model. All the constraints are equations with right-
hand-side constants equal to 1, so this model takes the form of a set-partitioning pro-
blem. The sets of constraints corresponding to (6.1) and (6.2) each have distinctive,
repeating clusters of nonzero coefficients, which become visible when we zoom out
and display the entire model in one window. By examining the model at this zoom
level, we can scan the layout for possible typos or omissions.

The model specification is the following

Objective: BZ16 (maximize)
Variables: C15:BY15
Constraints: BZ18:BZ47 ¼ 1

BZ49:BZ63 ¼ 1
C15:BY15 ¼ binary
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A solution appears in both Figures 6.14 and 6.15, but the entire schedule is more use-
fully displayed in a table such as in Table 6.1, with shading to designate intradivision
games.

In the optimal schedule, all intradivision games are played in weeks 3–5.
Although six intradivision games must be played, they cannot all fit into the final
two weeks of the schedule.

The LASA scenario leads to a simple version of the playoff scheduling problem.
In actual practice, administrative bodies are concerned about several other features of
a schedule. For example, it’s common to keep track of home and away games and
to restrict a schedule so that no team plays more than two consecutive games at
home. In other settings, governing boards keep track of especially “strong” teams
and require that no team be scheduled to play two strong teams in successive
weeks. Finally, in many countries, soccer games compete with cultural events, so lea-
gues often prohibit games on dates corresponding to local festivals, bicycle races, or

Figure 6.14. Portion of the spreadsheet model for Example 6.6.
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religious celebrations. Considerations such as these can be accommodated with integer
programming models, but sometimes the scheduling models grow quite large.

6.7. SOLVING A LARGE-SCALE SET PARTITIONING
PROBLEM

In this section, we examine a very large type of binary choice problem. It is considered
large because it contains a large number of variables, not to mention a large number of
feasible possibilities. Although the size of the problem outstrips the normal capabili-
ties of Solver, the set partitioning model provides us with an alternative approach to
finding a solution. The scenario at Courier Express gives rise to such a problem.

EXAMPLE 6.7 Courier Express

Courier Express serves 12 locations in its region with delivery service from a central transpor-
tation hub. Each day, trucks are sent out to several locations, where they deliver and collect
packages. Then the trucks return to the hub, where the pickups are sorted and sent on, and
where incoming packages are sorted and loaded on trucks in preparation for the next day’s
work. Each truck leaves the hub, visits some locations, and then returns to headquarters. The
dispatching problem is to route the trucks so that some truck visits each location. Distances
between locations are known. Courier Express wants to find a dispatching plan that achieves
the minimum total distance traveled by its trucks each day. B

The distance data for Example 6.7 can be displayed in an array, as shown in
Figure 6.16. In this array, the element appearing in row i and column j is dij, the dis-
tance from location i to location j. Location 1 corresponds to the depot, and locations
2–13 correspond to the pickup and delivery points.

To analyze this problem, we first assume that Courier Express deploys four trucks
and that each truck travels to three locations before returning to the depot. For each
truck, we want to assign a set of locations and a sequence for those locations. We
refer to this assignment as a segment. Each segment has a total distance, dictated
by the sequence in which the truck visits the locations and returns to the depot. A
full solution is made up of four segments, one for each truck. For a group of four seg-
ments to be feasible, each location must be visited exactly once.

Table 6.1. Playoff Schedule for LASA

Week
1 2 3 4 5 

1 16 15 12 13 14 
2 24 26 21 25 23

Team 3 35 34 36 31 32 
4 42 43 45 46 41 
5 53 51 54 52 56 
6 61 62 63 64 65 
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Figure 6.17 displays a model for this situation. Columns B–Z correspond to 25
segments. In column B, for example, the truck travels from the depot (city 1) to
cities 7, 12, and 9 in order, and then returns to the depot. This route is specified in
rows 25–29. Based on that route, the pairwise distances between locations are
recorded in rows 31–34 and their total appears in row 36. These 25 segments have
been selected randomly.

The remainder of Figure 6.17 shows a set partitioning model in which binary-
choice variables indicate whether a segment should be selected. The objective
function is the SUMPRODUCT of the binary variables and the total distances
in row 36. The constraints in the model require that each location must be selected
exactly once. Thus, the model attempts to find the best feasible combination of

Figure 6.16. Distance data for Example 6.7.

Figure 6.17. Set partitioning model for Example 6.7.
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the 25 segments. (It’s possible, however, that no feasible combination can be found.)
Although the initial set of decision variables shown in Figure 6.17 is infeasible, a
Solver run produces an optimal total distance of 791, as shown in Figure 6.18.

It is unlikely that the solution to the problem shown in Figure 6.18 is truly an
optimal solution to the overall problem because it is based on 25 randomly selected
segments. However, we can repeat the analysis by generating another set of ran-
domly selected segments and finding another solution. In fact, we can repeat this
procedure several times. Figure 6.19 provides a view of the entire model, starting
with the distance array in rows 3–15. Rows 19–21 contain a segment generator,
which consists of random locations. These selections are determined by the formula
=RANDBETWEEN (2,13). We can generate a new set of segments by pressing the
F9 key; then we can copy the data in rows 19–21 and paste the values into rows
26–28. The formulas in the spreadsheet find the individual distances between
locations by looking up values in the distance array, thus updating the objective func-
tion in cell AA38. The coefficients on the left-hand side of the constraints are binary
values corresponding to the numbers in the segments of rows 26–28. Thus, as soon as
we paste data into rows 26–28, the formulas in the spreadsheet update the set partition-
ing model. A Solver run finds a new optimal solution.

The revised model gives rise to a solution that may be better or worse than the
previous one. However, we can repeat the segment generating procedure several
times, saving the best solution encountered. In one set of trials, we repeated the
procedure a dozen times and generated a solution with a total distance of 720.

How good is the solution thus obtained? It is difficult to say for sure. However, the
repeated solution of a randomly generated subproblem seems to show considerable
potential for generating good solutions. In addition, we can strengthen our approach
in at least two ways. First, we can expand the model and include more segments.
Our 25-segment model gave rise to an integer programming model with 25 variables
and 12 constraints. It would not be difficult to solve problems containing 40 or 50 seg-
ments, and the sampling mechanism would likely be more effective. (An experiment
using 40 segments with about a dozen trials generated a solution with a value of 627.)

Figure 6.18. Optimal solution for the model.
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Second, we don’t have to limit ourselves to segments containing exactly three loca-
tions. By constructing the model with some two-location segments and some four-
location segments, we increase our chances of finding an asymmetric combination
that might work even better. (Another experiment along these lines generated a sol-
ution value of 625.)

In this example, it is important to recognize that a direct attempt to find an optimal
solution is likely to be impractical. If we tried to build a set-partitioning model contain-
ing all the possible segments, we would be facing the construction of a binary-choice
model with hundreds of millions of variables—well beyond the capabilities of Solver.
Perhaps we could imagine building a specialized algorithm tailored to the specific
problem we want to solve, but that approach has drawbacks, too. We would need
specialized code, and there would still be no guarantee that our algorithm would
converge in a reasonable amount of time. Relying on randomly-generated segments
may well be our best approach to finding at least a good solution.

6.8. THE ALGORITHM FOR SOLVING INTEGER
PROGRAMS

We can give a rough outline of the procedure that Solver uses to find solutions to
integer programming models, drawing on an example. For this purpose, we revisit

Figure 6.19. Improved solution for Example 6.7.
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Example 2.1 (Brown Furniture Company), in which the problem is to determine the
best allocation of resources to the production of chairs, desks, and tables. Suppose
the problem has changed slightly so that there are 1900 available hours of fabrication
capacity, 1850 of machining, and 1450 of assembly, along with 9600 square feet of
wood. The linear programming problem is as follows.

Maximize z = 16C +20D +14T
subject to

4C +6D +2T ≤ 1900
3C +8D +6T ≤ 1850
9C +6D +4T ≤ 1450

30C +40D +25T ≤ 9600

Now we require all variables in the solution to be integers—that is, we want the
number of chairs, desks, and tables to all be integers so that we can interpret the sol-
ution literally, as a viable schedule for the month.

When Solver tackles an integer programming problem, its first step is simply to
ignore the integer restrictions and treat the problem as a normal linear program.
This is called the relaxed problem, in the sense that the integer constraints are relaxed.
We refer to this linear program as problem P. If we are fortunate, the optimal solution
to this problem will contain integer decision variables and we will have solved the inte-
ger program. In this example, unfortunately, the optimal solution does not consist of
integers, and we obtain

Solution to P

C = 9.26, D = 227.8, T = 0

z∗ = 4703.7

The value of the objective function is at least an upper bound on the best value we
could attain with integer values. No integer-valued solution could improve on the
solution to the relaxed problem, in which the integer constraints do not apply.

Solver recognizes that this solution is infeasible for the integer program and
creates two new linear programming problems to solve. The first, which we refer
to as P1, corresponds to the original problem, with the additional constraint D ≤
227. The second, referred to as P2, corresponds to the original problem, with the
requirement D ≥ 228. In other words, we select a noninteger variable in the optimal
solution and append one of two constraints: we force this variable to be either
no larger than the next lower integer, or no smaller than the next higher integer.
We could use an arbitrary rule to select which variable to constrain or a rule with
a little more intelligence. Here, we choose the variable that is closest to an
integer value.

The better of the solutions to the integer versions of P1 and P2 must be the optimal
solution to the original problem. The reason is that together the two problems
correspond to all feasible choices of integer decision variables, because they
exclude only the cases associated with D-values strictly between 227 and 228, none
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of which is an integer. The implication is that we can forget the original problem for
now and concentrate just on the two modified problems that replaced it, P1 and P2. If
we can solve both of those as integer programs, we will have the solution we seek.

Next, Solver tackles P1. Intuitively, we might expect the optimal solution to con-
tain D at a value of 227 because it “wants” to be 227.8, but the additional constraint
prevents it from being that large. Indeed, that is the case, and we obtain the following
result.

Solution to P1

C = 9.33, D = 227, T = 1

z∗ = 4703.3

As we might expect, the additional constraint leads to a drop in the optimal objective
function. More importantly, we still weren’t lucky enough to produce an integer sol-
ution because C remains noninteger.

When Solver tackles P2 (where D ≥ 228), the optimal solution is as follows

Solution to P2

C = 8.67, D = 228, T = 0

z∗ = 4698.7

Having replaced the original problem with two modified problems, the status of
our search is shown in Figure 6.20. Here, each (linear programming) problem is rep-
resented by a node in the tree diagram. We say that we branch from the original pro-
blem P to the modified problems P1 and P2. This means that we need only examine the
two replacement problems and not the original. In a sense, the search has been effec-
tive so far because we started with a model that generated two noninteger decision
variables, but now we are dealing with models that generate only one noninteger
decision variable.

Next, we select P1 for branching. We recognize that the optimal solution is infeas-
ible for the integer version of P1 because the value of C is noninteger. Hence, we create
two modified versions to solve, one in which we add the constraint C ≤ 9; the other in
which we add the constraint C ≥ 10. These bounds use the integers on either side of
the value of C in the optimal solution to P1. We refer to these problems as P11 (with

Figure 6.20. First level of branching.
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C ≤ 9) and P12 (with C ≥ 10). Now we can forget P1. The best among the solutions of
P11, P12, and P2 will be the solution we seek.

When we solve P11 we obtain the following result.

Solution to P11

C = 9, D = 227, T = 1.17

z∗ = 4700.3

The optimal solution is still noninteger, and the objective function has dropped
slightly from the value in P1. When we solve P12 we obtain the following result

Solution to P12

C = 10, D = 220, T = 10

z∗ = 4700

Here, we have been fortunate, and the solution to the linear program contains
three integer-valued decision variables. It was not merely good fortune, of course:
The systematic choice of additional constraints helped lead us to an integer solution.
This solution is a feasible integer solution to the original problem. Now, the status
of our search is shown in Figure 6.21. In principle, we could pursue the search
from P11 or P2.

Consider the linear program in P2 and its objective function, which Solver has
optimized at 4698.7. The solution of P2 is still not feasible for the integer program,
and the only way we can produce an integer-feasible solution is to impose additional
constraints. Thus, the value 4698.7 represents an upper bound on the best solution we
could find in this part of the search tree. When we add constraints to P2, its objective
function cannot get better, so it can be no larger than 4698.7. Since we have already
found an integer-feasible solution with an objective function value of 4700, there is no
reason to look for a feasible solution to P2 because its objective function value could
not be as good as the 4700 we have already found. We say that we have fathomed the

Figure 6.21. Second level of branching.
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search tree below P2, in the sense that we have implicitly evaluated all the branches that
might emanate from P2 and determined from the bound that none of the branches
could be as good as the feasible solution we have already encountered.

We turn next to P11. Its bound is 4700.3. Because this value is larger than that of
the best integer solution we have found, it is still possible that we could find a better
solution by branching from P11. Because the only noninteger decision variable in
P11 is T ¼ 1.17, we branch to P111 (adding the constraint T ≤ 1) and P112 (adding the
constraint T ≥ 2), and we obtain the following results.

Solution to P111

C = 9, D = 227, T = 1

z∗ = 4698

Solution to P112

C = 9, D = 226.4, T = 2

z∗ = 4699.5

We now have enough information to identify the optimal solution to the original
problem. The solution to P111 contains integer decision variables, but its objective
function is not as large as the integer-feasible solution to P12. In addition, we can
fathom P112 because its upper bound is 4699.5, also not as large as the integer-feasible
solution to P12. The final status of our search is shown in Figure 6.22, where we can see
that the solution to P12 turns out to be optimal.

For any integer programming problem, Solver begins with the relaxed (linear)
problem and finds the optimal solution to the corresponding linear program. If

Figure 6.22. Final status of tree search.
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all of the variables are integer, the solution to the integer program has been found. If
not, x1 will turn out to be either an integer or a fraction. If it is a fraction, Solver replaces
the original problem with two derived problems (P1 and P2), each with an additional
constraint that forces the solution away from the fractional value in the original. On
the other hand, if x1 is an integer, Solver then examines x2. Two alternatives may
arise, depending on whether x2 is an integer or a fraction. If it is a fraction, Solver
creates two derived problems containing additional constraints that force the solution
away from the fractional value of x2. Otherwise, Solver proceeds to examine x3, and
so on.

At each stage in this procedure, Solver maintains a list of unsolved problems.
This list is structured so that the best integer-feasible solution to the problems on
the list will be the optimal solution for the original model. One at a time, problems
are removed from the list and addressed by solving them as linear programs. Either
the solution will be integer-feasible, or the problem will be replaced by two other
problems, each containing an additional constraint. This procedure requires the
solution of a series of linear programs. The list might get quite long, but the proce-
dure ultimately produces an optimal solution with integer-valued decision variables.
The replacement of a problem on the list by two others is called branching. This
name comes from a tree-like diagram that traces the different problems (as in
Figure 6.22).

As we saw, it is possible to curtail the list of problems that have to be solved. Any
time we encounter an integer-feasible solution, the branching in that portion of the tree
is finished. Elsewhere, branching may lead to an infeasible linear program, which also
terminates branching. Otherwise, we can try to use the bounds to fathom certain
problems and also terminate the branching. Suppose that, at some stage of solving a
maximization problem, the list contains a problem with a value (upper bound) that
is worse than the value of the objective function in an integer-feasible solution already
encountered. Whenever the bound on a derived problem is worse than the value of a
known integer solution, then the derived problem may be removed from the list
because its solution could never be optimal. (The mirror image of this statement
holds when we are minimizing: in that case, whenever the bound on a derived problem
is higher than the value of a known integer solution, then we can remove the derived
problem from the list.)

The generic name for the overall procedure Solver uses is branch and bound,
reflecting the two mechanisms that guide the search. Branching replaces a problem
on the list with two problems that are, in some sense, closer to being solved as integer
programs. Bounding explores whether a particular problem could just be deleted from
the list because it offers no hope of finding an optimum. Nevertheless, the essence of
the procedure is to solve a number of linear programs, to replace one problem with two
whenever an integer constraint is violated, and to use bounds to remove problems from
the list in order to reduce the workload. Because this procedure relies on the solution of
many linear programs, it is as reliable a procedure as the linear solver on which it
depends. That is, the branch and bound procedure is guaranteed to produce a global
optimum.
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SUMMARY

The ability to treat variables as integer valued, and in particular, the ability to designate variables
as binary, opens up a wide variety of optimization models that can be addressed with Solver.
This chapter introduced two broad classes of models that can be handled effectively with
Solver. The first type of model is one that resembles a linear program but with the requirement
that certain variables must be integer valued. For the purposes of using Solver, this requirement
is added to the linear programming model as an additional constraint. The second type of model
is one in which certain decisions exhibit an all-or-nothing structure, representing actions that are
indivisible. Such decisions are modeled by binary variables, which are simply integer-valued
variables no less than zero and no greater than one. Binary variables allow us to model the occur-
rence of yes/no choices and to exploit Solver, provided that the structure of the model is linear in
all other respects.

In this second category, we explored three closely related model structures: set covering, set
packing, and set partitioning. In the basic form of these models, the objective function coeffi-
cients and the right-hand side constants are 1s, but generalizations are also possible, as illustrated
in some of the exercises at the end of this chapter.

In the next chapter, we examine a broader set of integer programming models, based on the
ability to represent logical constraints using binary variables. In those models, the logical con-
ditions do not seem linear, but they can be expressed in linear forms with the help of binary
variables.

EXERCISES

6.1. Callum Communications (Revisited) Revisit Example 6.1. Suppose that the objective
at Callum Communications is to minimize the number of employees, rather than to mini-
mize the total cost.

(a) What is the minimum number of employees needed at the call center?

(b) Does the solution in (a) achieve the minimum salary cost?

6.2. Make or Buy A sudden increase in the demand for smoke detectors has left Acme
Alarms with insufficient capacity to meet demand. The company has seen monthly
demand from its retailers for its electronic and battery-operated detectors rise to 20,000
and 10,000, respectively, and Acme wishes to continue meeting demand. Acme’s
production process involves three departments: Fabrication, Assembly, and Shipping.
The relevant quantitative data on production and prices are summarized below.

Monthly hours Hours/unit Hours/unit
Department available (electronic) (battery)

Fabrication 2000 0.15 0.10
Assembly 4200 0.20 0.20
Shipping 2500 0.10 0.15

Variable cost/unit $18.80 $16.00
Retail price $29.50 $28.00
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The company also has the option to obtain additional units from a subcontractor,
who has offered to supply up to 20,000 units per month in any combination of electronic
and battery-operated models, at a charge of $21.50 per unit. For this price, the subcontrac-
tor will test and ship its models directly to the retailers without using Acme’s production
process.

(a) Acme wants an implementable schedule, so all quantities must be integers. What are
the maximum profit and the corresponding make/buy levels?

(b) Compare the maximum profit in (a) to the maximum profit achievable without integer
constraints. Does the integer solution correspond to the rounded-off values of the
noninteger solution? By how much (in percentage terms) do the integer restrictions
alter the value of the optimal objective function?

6.3. Selecting an Investment Portfolio An investment manager wants to determine an opti-
mal portfolio for a wealthy client. The fund has $2.5 million to invest, and its objective is
to maximize total dollar return from both growth and dividends over the course of the
coming year. The client has researched eight high-tech companies and wants the portfolio
to consist of shares in these firms only. Three of the firms (S1–S3) are primarily software
companies, three (H1–H3) are primarily hardware companies, and two (C1–C2) are
internet consulting companies. The client has stipulated that no more than 40 percent
of the investment be allocated to any one of these three sectors. To assure diversification,
at least $100,000 must be invested in each of the eight stocks. Moreover, the number of
shares invested in any stock must be a multiple of 1000.

The table below gives estimates from the investment company’s database relating to
these stocks. These estimates include the price per share, the projected annual growth rate
in the share price, and the anticipated annual dividend payment per share.

Stock

S1 S2 S3 H1 H2 H3 C1 C2

Price per share $40 $50 $80 $60 $45 $60 $30 $25
Growth rate 0.05 0.10 0.03 0.04 0.07 0.15 0.22 0.25
Dividend $2.00 $1.50 $3.50 $3.00 $2.00 $1.00 $1.80 $0.00

(a) Determine the maximum return on the portfolio. What is the optimal number of
shares to buy for each of the stocks? What is the corresponding dollar amount
invested in each stock?

(b) Compare the solution in which there is no integer restriction on the number of shares
invested. By how much (in percentage terms) do the integer restrictions alter the
value of the optimal objective function? By how much (in percentage terms) do
they alter the optimal investment quantities?

6.4. Production Planning for Components Rummel Electronics produces two PC cards, a
modem and a network adapter. Demand for these two products exceeds the amount that
the firm can make, but there are no plans to increase production capacity in the short run.
Instead, the firm plans to use subcontracting.

The two main stages of production are fabrication and assembly, and either step can
be subcontracted for either type of card. However, the company policy is not to subcon-
tract both steps for either product. (That is, if modem cards are fabricated by a
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subcontractor, then they must be assembled in-house.) Components made by subcontrac-
tors must pass through the shipping and receiving departments, just like components
made internally. At present, the firm has 5200 hours available in fabrication, 3600 in
assembly and 3200 in shipping/inspection. The production requirements, in hours per
unit, are given in the following table.

Product/mode Fab. Ass. Ship.

Modem, made entirely in-house 0.35 0.16 0.08
Network, made entirely in-house 0.47 0.15 0.12
Modem, fabricated by subcontractor – 0.18 0.10
Network, fabricated by subcontractor – 0.16 0.15
Modem, assembled by subcontractor 0.35 – 0.09
Network, assembled by subcontractor 0.47 – 0.14

The direct material costs for the modem cards are $3.25 for manufacturing and $0.50
for assembly; for network cards, the costs are $6.10 and $0.50. Subcontracting the man-
ufacturing operation costs $5.35 for modem cards and $8.50 for network cards.
Subcontracting the assembly operation costs $1.50 for either product. Modem cards
sell for $20, and network cards sell for $28. The firm’s policy, for each product, is that
at most 40 percent of the units produced can have subcontracted fabrication, and at
most 70 percent of the units can have subcontracted assembly.

(a) Determine the production and subcontracting schedule that will maximize profits,
given that Rummel Electronics wishes its schedule to contain an integer number of
units produced and subcontracted.

(b) Solve the problem without the integer restrictions. What is the solution? By how
much (in percentage terms) do the restrictions alter the value of the optimal objective
function?

6.5. Catering Logistics Jessica’s Catering Service bakes and delivers lasagnas to parties
and group meetings. In a typical week, Jessica has around 40 orders. Each order involves
a specific amount of the required lasagna in pounds. A small group would need about
20 lb, whereas a large group would need almost triple that amount. The following
table shows the different customer orders that have come in this week, grouped into
eight categories by weight.

Job type 1 2 3 4 5 6 7 8

Weight (lbs) 20 25 30 35 40 45 50 55
Number 10 5 4 7 3 9 2 1

Jessica has an inventory of 25 six-lb trays and 18 ten-lb trays. Although she appears to
have enough capacity in her trays, she would like to plan her orders so that the amount
of excess lasagna is kept to a minimum.

How many six-lb trays and ten-lb trays should Jessica use for each of the orders?

6.6. Location of Services The Division of Motor Wyoming (DMV) in Wyoming operates
several offices around the state. Citizens must travel to one of these offices to register a car,
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obtain a title, renew an operator’s license, and perform a number of other minor activities.
However, it is expensive for the DMV to operate a large number of offices, so the DMV
has been keeping some offices open only three days per week and closing down other
offices entirely in an attempt to reduce expenses. Recently, the suggestion was made to
have one mobile DMV office which would operate out of a trailer and appear in a different
location each day. The question then became: How much coverage could the mobile
design provide? A possible standard was proposed: Locate the mobile office so that at
least once a week, residents of the state could go to the DMV in their own county, or
in a neighboring county.1

Is it possible to locate the mobile office in such a way that for any county, the office
will either locate in that county or locate in a neighboring county at least once per (5-day)
week? If so, which counties should host the office for a day? If not, what is the minimum
number of days required to provide all residents access within their county or a neighbor-
ing county?

6.7. Reservation Scheduling Roth Auto Rentals, a car rental company specializing is
SUVs, is making up a schedule for the next weekend’s demands. The peak demand
period occurs on the weekend, when Roth may not have enough SUVs to meet
demand. The customer demands that have been logged in are listed below.

Days Customers

Fri–Mon 1
Fri–Sat 4
Fri–Sun 5
Sat–Sun 4
Sat–Mon 3
Sun–Sun 2

The rental cost depends on which days the contract covers.

Days FSSM FS FSS SS SSM Sun

Rate 119.95 69.95 99.95 74.95 89.95 39.95

Roth Auto Rentals carries only one type of vehicle and expects to have 10 SUVs available
for rental over the weekend.

(a) What is the maximum revenue that can be generated from the list of orders?

(b) In the optimal solution of (a), what percentage of customer demand is satisfied?

(c) In the optimal solution of (a), what percentage of dollar demand is satisfied?

(d) Answer the set of three questions above for fleet sizes of 11–16.

6.8. Scheduling Reservations Reed’s Rent-a-Car is a traditional auto rental company
facing the problem of assigning vehicles to weekend demands. However, Reed’s

1A map of counties can be found by selecting a state at http://www.digital-topo-maps.com/county-map/
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distinguishes rentals by car type. Its fleet consists of three compact (C) cars, five mid-size
(M) cars and three full-size (F) cars. The customer demands that have been logged in are
listed below.

Days C M F

Fri–Mon 0 1 0
Fri–Sat 1 2 1
Fri–Sun 2 2 1
Sat–Sun 1 3 0
Sat–Mon 3 0 0
Sun–Sun 0 1 1

The rental rates depend on how many days the contract covers. Prices for compact
cars are shown below. Mid-size cars carry a 10 percent premium, and full-size cars
carry a 20 percent premium.

Days 1 2 3 4

Rate 39.95 74.95 99.95 119.95

(a) Assume Reed’s were to prohibit a customer who ordered one size from renting
another size. What is the maximum revenue that can be generated from the list of
orders?

(b) Assume Reed’s were to permit a customer to substitute a larger size for any order, but
with no change in price. What is the maximum revenue that can be generated from the
list of orders?

(c) In the optimal solution of (b), what percentage of dollar demand is satisfied?

6.9. Allocating Components to Assemblies Bikes.com is a web-based company that sells
bicycles on the internet. Its distinctive feature is that it allows customers to customize the
design when they order and then to receive quick delivery. Bikes.com gives customers
choices for frame size (34, 36, 38), suspension (standard or heavy-duty), and gear
speeds (5, 10, 15). As a result, customers can order one of 18 possible combinations
(3 × 2 × 3). The company shorthand refers to frame size as Option A (A1 is the 34-
inch model, A2 is the 36-inch model, and A3 is the 38-inch model). Similarly, the stan-
dard suspension is option B1, and the heavy-duty suspension is B2. The gear speeds are
C1 (5), C2 (10), and C3 (15).

Rather than stock 18 different types of bicycles, Bikes.com holds inventories
of the major components and then assembles the bikes once a customer order comes
in. Orders are taken Mondays through Wednesdays, assemblies are done on Thursdays,
and shipments go out on Fridays. Thus, at the close of business on Wednesday,
Bikes.com has an inventory of components and a list of orders, and its task is
to match components with orders to meet as much demand as possible. The tables
below describe customer orders for this week and the inventory status at the end of
Wednesday.
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Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
B 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2
C 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Orders 4 5 0 5 1 7 0 4 8 1 2 0 5 6 4 0 1 5

Component A1 A2 A3 B1 B2 C1 C2 C3

Inventory 12 20 30 20 25 18 16 20

(a) What is the maximum number of customer orders that can be satisfied this week?

(b) Suppose that the profitability varies by model type, as shown in the table below. What
is the maximum profit that can be achieved from this week’s orders?

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Profit 45 55 70 65 75 90 47 57 72 67 77 92 50 60 75 70 80 95

6.10. The Latin American Soccer Association (Revisited) Revisit Example 6.6. Suppose
that the Latin American Soccer Association (LASA) decides to create a longer playoff
schedule. They want each team to play two games against the teams in its own division
and one game against each team in the other division. Construct a playoff schedule that
maximizes the number of games played by intra-division rivals toward the end of the
season.

(a) How many weeks are required for the entire schedule?

(b) How many variables and constraints appear in the optimization model?

(c) What is an optimal schedule for LASA?

(d) Review your schedule in part (c) and determine whether the same two teams ever
meet in successive weeks. Amend the model to prohibit such meetings and construct
an optimal schedule.

6.11. Cutting Stock Poly Products sells packaging tape to industrial customers. All tape is
sold in 100-foot rolls that are cut in various widths from a master roll, which is 15
inches wide. The product line consists of the following widths: 2′′, 3′′, 5′′, 7′′, and 11′′.
These can be cut in different combinations from a 15-inch master roll. For example,
one combination might consist of three cuts of 5′′ each. Another combination might con-
sist of two 2′′ cuts and an 11′′ cut. Both of these combinations use the entire 15-inch roll
without any waste, but other combinations are also possible. For example, another com-
bination might consist of two 7′′ cuts. This combination creates one inch of waste for
every roll cut this way.

Each week, Poly Products collects demands from its customers and distributors and
must figure out how to configure the cuts in its master rolls. To do so, the production man-
ager lists all possible combinations of cuts and tries to fit them together so that waste is
minimized while demand is met. (In particular, demand must be met exactly, because
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Poly Products does not keep inventories of its tape.) This week’s demands are shown
below.

Size 2′′ 3′′ 5′′ 7′′ 11′′

Demand 20 30 40 50 60

(a) How many combinations can be cut from a 15-inch master roll so that there is less
than two inches of waste (i.e., the smallest quantity that can be sold) left on the roll?

(b) Find a set of combinations that meets demand exactly and generates the minimum
amount of waste. (Stated another way, the requirement is to meet or exceed
demand for each size, but any excess must be counted as waste.) What is the optimal
set of combinations and the minimum amount of waste?

Case: Motel Location for Nature’s Inn

Nature’s Inn operates a motel chain with two types of motels. Under its brand Comfort Express
(CE), it offers a relatively inexpensive, spartan motel. Under its Family Suites (FS) brand, it
offers a more expensive motel distinguished by various extra features. Both brands are associ-
ated with the latest ideas in green building design, attracting a segment of the customer market
that is willing to let considerations of sustainability influence its purchasing decisions.
Following a successful first round of expansion in the Northeast region, Nature’s Inn is planning
another round of expansion, this time into the Midwest region.

Working with a real estate consultant, Nature’s Inn has identified ten potential sites for the
location of new motels. Each site can accommodate either a CE motel or a FS motel (but not
both). Using historical data from the Northeast region, the consultant has estimated the net pre-
sent value (NPV) of the cash flows attainable over the next ten years at each location, with sep-
arate figures for CE and FS.

EXHIBIT 6.1 Proximity Data and Economic Estimates

Location
Locations

within 30 miles
Locations

within 40 miles
CE NPV

($ million)
FS NPV

($ million)

1 2 2, 6 10.147 11.899
2 1 1 12.191 11.242
3 4 4 13.359 10.731
4 3 3, 5 9.344 7.519
5 – 4 11.388 14.235
6 9 1, 8, 9 6.935 9.636
7 8, 10 8, 10 12.629 8.687
8 7, 9, 10 6, 7, 9, 10 13.505 10.293
9 6, 8, 10 6, 8, 10 9.344 9.709
10 7, 8, 9 7, 8, 9 8.249 11.461
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The consultant has also carried out a survey to explore the extent to which demand might be
affected when two motels are located in close proximity. The first finding was that CE customers
and FS customers are different segments, for the most part, and little crossover demand occurs.
On the other hand, among CE and FS customers, competition occurs when motels are located too
close to each other. The data suggest that competition becomes an economic factor for CE motels
when they are located within 30 miles of each other and for FS motels within 40 miles of each
other. Nature’s Inn has therefore decided to respect these distances in their choice of locations: In
the Midwest, CE motels will not be located within 30 miles of each other, and FS motels will not
be located within 40 miles of each other. The results of the consultant’s work are summarized in
Exhibit 6.1.

The task for Nature’s Inn is now to develop a location plan for its Midwest expansion.
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Chapter 7

Integer Programming:
Logical Constraints

In the previous chapter, we covered how to solve integer programming problems using
Solver. We also introduced the use of binary variables, which represent yes/no
decisions, and we saw how binary variables arise naturally in set covering, set packing,
and set partitioning. In this chapter, we expand the use of binary variables in connec-
tion with relationships we call logical constraints that restrict consideration to certain
combinations of variables. Normally, we might not immediately think of these restric-
tions as linear constraints, but we can capture them in linear form with the use of binary
variables.

We begin with the illustration of a counting constraint. This term refers to a quan-
titative constraint for counting our decisions, and the use of binary variables makes
counting easy. As an example, we revisit the capital budgeting problem which, in
its basic form, is a pure integer program containing binary variables and one con-
straint. We encountered this structure in Example 6.2, in the Newton Corporation.

EXAMPLE 7.1 The Newton Corporation

The Newton Corporation has tentatively allocated $40 million for capital investments after
considering the financial characteristics of the following projects.

P1 Renovate the production facility for greater efficiency.

P2 License a new technology for use in production.

P3 Expand advertising by naming a stadium.

P4 Purchase land and construct a new headquarters building.

P5 Introduce a new product to complement the current line.

Project P1 P2 P3 P4 P5

NPV 2.0 3.6 3.2 1.6 2.8
Expenditure 12 24 20 8 16

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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After the initial analysis, which led to a total NPV of $6.8 million, some further consider-
ations have been brought up. It appears that the recommended selection of P1, P3, and P4
may not be feasible after all. The committee would still like to maximize the total NPV from
projects selected, subject to a $40-million limit on capital expenditures, but it has to recognize
the additional considerations. B

The tentative representation of the problem at Newton Corporation led to the
following model.

Maximize z = 2.0P1 +3.6P2 +3.2P3 +1.6P4 +2.8P5
subject to 12P1 +24P2 +20P3 +8P4 +16P5 ≤ 40

Projects P2 and P5 have international dimensions, whereas the others are dom-
estic. When the committee discussed this aspect of the projects, they decided to
select at least one project from the international arena. To represent this requirement
in the optimization model, we can add a covering constraint to the base case

P2 + P5 ≥ 1

The left-hand side of this constraint counts the number of international
projects adopted. Of course, the addition of a new constraint may make the
objective function worse. Neither P2 nor P5 was part of the optimal set of
projects, and because there is no extra space in the budget to include P2 or P5
without removing at least one of the other projects, we should anticipate that the
inclusion of P2 or P5 could lead to a lower NPV. With the new constraint, the optimal
NPV drops to $6.4 million, obtained by accepting both projects P2 and P5. Figure 7.1
shows this solution of the revised model, with the additional constraint for inter-
national projects.

Figure 7.1. Solution to Example 7.1 with international constraint.
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This additional constraint illustrates the fact that we can use binary variables, and
standard LT, GT, or EQ constraints, to represent counting requirements of the follow-
ing form.

† Select at least m of the possible projects from a given subset.

† Select at most n of the possible projects from a given subset.

† Select exactly k of the possible projects from a given subset.

To incorporate counting constraints, we must have binary variables representing each
of the elements we may wish to count. At least in the capital budgeting model, that is
precisely the structure we have.

7.1. SIMPLE LOGICAL CONSTRAINTS: EXCLUSIVITY
AND CONTINGENCY

Relationships we normally think of as logical relationships can also be expressed
with binary variables. Suppose that projects P2 and P5 are mutually exclusive (e.g.,
they could require the same staff resources). Although we might think of mutual exclu-
sivity as a logical property belonging to a pair of variables, we can also interpret this
feature as a special case of the condition for selecting at most n and write

P2 + P5 ≤ 1

We know that adding a constraint will not lead to a better solution, but we can’t antici-
pate whether the optimal NPV will actually get worse. As it happens, there is another
solution that achieves an NPV of $6.4 million without requiring both P2 and P5, as
shown in Figure 7.2.

In addition, we sometimes encounter contingency relationships. Suppose that pro-
ject P5 requires that P3 be selected. In other words, P5 is contingent on P3. To analyze

Figure 7.2. Solution to Example 7.1 with mutually-exclusive constraint.
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logical requirements of this sort, consider all possible combinations for the variables
P3 and P5. The following table shows that three of the four combinations are consist-
ent with the contingency condition.

P3 P5 Consistent?

0 0 Yes
1 0 Yes
0 1 No
1 1 Yes

We can accommodate the three consistent combinations and exclude the inconsistent
combination by adding the following constraint

P3 − P5 ≥ 0

At this stage, we specify the model as follows.

Objective: G8 (maximize)
Variables: B5:F5
Constraints: G11 ≤ I11

G12 ≥ I12
G13 ≤ I13
G14 ≥ I14
B5:F5 = binary

With the contingency constraint appended, the optimal NPV drops to $6 million, as
shown in Figure 7.3.

Figure 7.3. Solution to Example 7.1 with mutually-exclusive constraint.
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Thus, we can accommodate logical constraints among related variables within the
framework of linear programming with binary variables. The Newton Corporation
example illustrates how we might incorporate counting constraints, such as “at most
2,” or qualitative information, such as contingency or mutual exclusivity. Such
relationships usually require some specialized constraints in the model in addition
to the use of binary variables. In the remainder of this chapter, we elaborate on
models containing other logical constraints by examining a series of illustrative
problem types.

7.2. LINKING CONSTRAINTS: THE FIXED
COST PROBLEM

Linear objective functions assume strict proportionality: In particular, the cost
incurred by an activity is proportional to the activity level. However, we commonly
encounter situations in which an activity cost is composed of a fixed component
and a variable component, where only the variable cost is proportional to the level
of activity. Using a binary variable, we can represent the fixed cost as part of the objec-
tive function and still work with a linear model.

Suppose that we have already built a linear programming model, but one variable
(x) has a fixed cost that we want to represent in the objective function. To incorporate a
fixed cost into the model, we first separate the fixed and variable components of cost.
In algebraic terms, we write total cost in the following form

Total cost = Fixed cost + Variable cost

BOX 7.1 Excel Mini-Lesson: Binary Variables and the IF Function

Experienced users of Excel will see little difficulty in modeling a contingency constraint
if they are familiar with the IF function. A logical statement of the contingency between
P3 and P5 could include the recalculation P5 in light of P3. Once P3 and P5 have initial
values, we could recalculate P5 in cell F6 according to the contingency by using the
formula

¼IF(P3¼1,P5,0)

This formula would take the original value of P5 if P3 ¼ 1, but it would become zero other-
wise (i.e. if P3 ¼ 0). The objective function can then be expressed with the formula

¼SUMPRODUCT ($B$5:$E$5,B8:E8)+$F$6∗F8

A similar function can represent the left-hand side of each of the constraints. However, the
IF function is not a linear function. If the Nonsmooth Transformation option is set to Never
and we specify the linear solver, we encounter an error message stating that the model does
not satisfy the linearity conditions. To use Solver reliably for integer programming, the IF
function should be avoided.
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Alternatively, using symbols, we write

TC = Fy + vx

where F represents the fixed cost and v represents the unit (variable) cost. A sketch of
the total cost function is shown in Figure 7.4. The variables x and y are decision vari-
ables, where x is a normal (continuous) variable and y is a binary variable. Constraints
in the linear program involve only the variable portion—that is, they involve only the
variable x, not the variable y. We also want the variables x and y to work consistently.
Specifically, we want to ensure that y ¼ 1 (so that we incur the fixed cost) whenever
x . 0, and we want to have y ¼ 0 (so that we avoid fixed cost) when x ¼ 0. To achieve
consistency in the two variables, we add the following linking constraint.

x ≤ My

where M represents some upper bound on the variable x.
To appreciate the linking constraint, imagine that Solver approaches the selection

of variables in two stages. In the first stage, binary variables (such as y) are set to either
0 or 1; then, in the second stage, continuous variables (such as x) are determined. The
two first-stage choices for the variable y provide us with the following possibilities in
the linking constraint

y = 1 so that x ≤ My becomes x ≤ M (meaning: x can be anything)

y = 0 so that x ≤ My becomes x ≤ 0 (meaning: x must be zero)

Thus, the variable x will be treated in a consistent way with the choice of y. In
particular, it is not possible to have y ¼ 0 and x . 0. In words, we cannot avoid the
fixed cost if we wish to use x at a nonzero level.

In principle, the linking constraint does allow us to set y ¼ 1 and x ¼ 0. That is,
the model permits us to incur the fixed cost even without using the variable x.
However, Solver will not produce such a solution because it would always be less
costly to set y ¼ 0 and avoid the fixed cost completely.

As an example of the fixed cost structure, consider the product planning decision
at the Moore Office Products Company.

Figure 7.4. Total cost with fixed and variable components.
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EXAMPLE 7.2 Moore Office Products Company

Moore Office Products has been producing and selling its goods in three product families (F1,
F2, and F3) and planning for those products using a product-mix type of linear programming
model. Each product family requires production hours in each of three departments. In addition,
each family requires its own sales force, which must be supported no matter how large or small
the sales volume happens to be. The parameters describing the situation are summarized in the
following table. Moore’s management is wondering whether it should continue to market all
three product families.

Hours required/1000 units family
Hours

F1 F2 F3 available

Department A 3 4 8 2000
Department B 3 5 6 2000
Department C 2 3 9 2000

Profit per unit ($) 1.20 1.80 2.20
Sales cost ($000) 60 200 100
Demand (000s) 300 200 50

B

At the heart of this situation lies a decision problem analogous to the product mix
example introduced in Chapter 2. The linear programming representation of the pro-
duct mix problem, without the fixed costs, is shown in Figure 7.5. By defining the x-
values in thousands, we have scaled the model so that the objective function is in thou-
sands of dollars. The optimal product mix calls for producing all three families, with
F1 and F2 at their demand ceilings, and F3 at a volume of 50,000. This product mix
creates $758,000 in variable profits, as computed in cell F8. If we subtract the total
fixed costs of $360,000, as computed in cell F17, we are left with a net profit of
$398,000, as computed in cell F19.

The linear programming solution might represent the situation in a firm that has
introduced and supported various new products over the years and now finds itself car-
rying out activities in three existing markets. The linear programming framework
suggests how to allocate capacity, provided that all three of the product families are
active. However, because fixed-cost considerations are not part of the linear program-
ming analysis, we have no basis for determining whether any one of the families
should be dropped. To make the model suitable for decisions of this kind, we must
integrate the implications for fixed costs.

To formulate the full problem at Moore Office Products as an integer program-
ming model, we make two changes in the product mix formulation. First, we write
the objective function with terms for both variable profit and fixed cost, as follows

Net profit = 1.20x1 − 60y1 + 1.80x2 − 200y2 + 2.20x3 − 100y3

where xj represents the volume for family j, in thousands, and

yj = 1 if xj is positive (and the fixed cost is incurred)

yj = 0 if xj is zero (and the fixed cost is avoided)
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Net profit is measured in thousands due to the scaling of the x-variables and the scaling
of the fixed cost coefficients.

Next, we add linking constraints to ensure consistency between each of the
x–y pairs.

x1 − My1 ≤ 0

x2 − My2 ≤ 0

x3 − My3 ≤ 0

Now we need to identify a large number to play the role of M. Essentially, we need a
number large enough that it will not limit the choice of these variables in any of the
other (demand and supply) constraints. For example, a value of 300 (thousand)
would work, since that represents the largest demand ceiling, and none of the volumes
could ever be larger.

Thus, when y2 ¼ 1, the linking constraint for family F2 becomes x2 ≤ 300; and
when y2 ¼ 0, the constraint becomes x2 ≤ 0. Similar interpretations apply to families
F1 and F3. These are valid linking constraints, but we can streamline the model
slightly. Instead of retaining separate constraints to represent the demand ceilings
and the linking relationships, we can let the linking constraint do “double duty” if
we choose a different value of M for each family and set it equal to the corresponding
demand ceiling. For example, the value of M selected for the F2 constraint could be
200 instead of 300. Then, when y2 ¼ 1, the constraint on the production volume for

Figure 7.5. Solution to Example 7.2 without fixed costs.
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family F2 becomes x2 ≤ 200, which also serves as a demand ceiling. When y2 ¼ 0, the
constraint still becomes x2 ≤ 0, in which case the specific choice of M does not matter.
The streamlined model, in its entirety, is the following

Maximize z = 1.20x1 − 60y1 + 1.80x2 − 200y2 + 2.20x3 − 100y3

subject to:

3x1 + 4x2 + 8x3 ≤ 2000

3x1 + 5x2 + 6x3 ≤ 2000

2x1 + 3x2 + 9x3 ≤ 2000

x1 − 300y1 ≤ 0

x2 − 200y2 ≤ 0

x3 − 50y3 ≤ 0

There are different ways to lay this model out in a spreadsheet. We could, for
instance, treat the xs and ys as six distinct variables and, in the traditional format,
build the spreadsheet with six columns on the left-hand side of the constraints.
Then, we could represent the constraints in the traditional format, as six rows, with
the usual SUMPRODUCT functions. An alternative is to pair the xs and ys that are
linked in successive rows, using just three columns (one for each product family).
Then we could associate the linking constraints with variable pairs and display
them in columns (one for each product family). Figure 7.6 shows the traditional
layout, and Figure 7.7 shows the alternative. In the latter, formulas in cells C16:E16
compute the left-hand side of the linking constraints. For example, the formula in
cell C16 reads: ¼C5–C15∗C6.

Figure 7.6. Spreadsheet layout for Example 7.2.
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For the layout in Figure 7.7, we specify the model as follows.

Objective: F9 (maximize)
Variables: C5:E6
Constraints: F11:F13 ≤ H11:H13

C16:E16 ≤ 0
C6:E6 = binary

The optimal solution achieves a net profit of $460,000, which we can obtain by
setting the Integer Tolerance to zero. In order to attain this level of profits, Moore
Office Products must forego production of product family F3 and produce families
F1 and F2 up to their respective ceilings. In other words, the model detects that
family F3 does not pay its own way and that profits would be increased by not produ-
cing or selling that family at all. By using an integer programming model that incor-
porates fixed costs, Moore Office Products can consider the implications of dropping a
product family. Such a possibility may be influenced by factors beyond profits in the
coming year, but the model helps to shape and quantify the economic considerations.

7.3. LINKING CONSTRAINTS: THE THRESHOLD
LEVEL PROBLEM

Sometimes we encounter situations where, in order to do business, we are required to
participate at a specified minimum level. In purchasing, for example, we might be able
to qualify for a discounted price if we buy in quantity. Thus, a condition in the problem

Figure 7.7. Alternative layout for Example 7.2.
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dictates that a decision variable must be either zero or at least as large as a specified
threshold.

The existence of a threshold level does not require an alteration in the objective
function of a model, and it can be represented in the constraints with the help of
binary variables. Suppose we have a variable x that is subject to a specified minimum
requirement. Let m denote the threshold value of x if it is nonzero. Then we can capture
this structure in an integer programming model by including the following pair of
constraints

x ≥ my

x ≤ My

where, as before, M is a large number that is greater than or equal to any value x could
feasibly take. To see how these two requirements work, again imagine that Solver
approaches the selection of variables in two stages. In the first stage, the binary vari-
able y is set to either 1 or to 0; then, in the second stage, Solver determines x. The two
first-stage choices for the variable y provide us with the following possibilities in the
linking constraints.

y = 1 so that: x ≥ my becomes x ≥ m (meaning: x meets the threshold)

and: x ≤ My becomes x ≤ M (meaning: x can be anything)

y = 0 so that: x ≥ my becomes x ≥ 0 (meaning: x must be nonnegative)

and: x ≤ My becomes x ≤ 0 (meaning: x must be nonpositive)

Thus, when y ¼ 1, the constraints reduce to m ≤ x ≤ M, so that x must at least meet the
threshold level. When y ¼ 0, the constraints reduce to x ¼ 0. Thus, the pair x and y will
behave consistently, and the threshold requirement will be respected.

As a brief illustration, suppose that in Example 7.2, materials for product family
F2 can be ordered from a major supplier only if the order supports an output level of
125 (thousand) or more. The model would need two constraints, as follows

x2 ≥ 125y2

x2 ≤ 200y2

This pair of linking constraints ensures that if x2 . 0, then it must lie between 125
and 200.

7.4. LINKING CONSTRAINTS: THE FACILITY
LOCATION MODEL

In designing its distribution system, a firm wants to know how many distribution facili-
ties it should have and where they should be located. If we think about the “how many”
question, we can see a basic tradeoff. As the firm uses more and more facilities, it can
place the facilities close to customer locations and thus reduce its variable distribution
costs. However, larger overhead costs will occur due to operating a larger number of
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facilities. In the other direction, as the firm uses fewer and fewer facilities, it will
encounter larger and larger variable costs, but the costs of operating the facilities
will drop. Figure 7.8 shows this tradeoff graphically. The horizontal axis represents
the number of facilities in the system. As this number increases, the total cost of dis-
tribution drops, while the cost of operating the facilities increases. (The graph shows
this latter component as a straight line, as if each facility incurs the same operating cost,
but this is only for illustration.) The total cost in the problem is the sum of distribution
cost and operating cost, shown as the U-shaped function on the graph.

The graph in Figure 7.8 is only a conceptual device to illustrate the main tradeoff
affected by the number of locations. Important details remain. For example, once we
choose the number of facilities, we must then determine which facilities to use.
Similarly, once we choose the facilities, we must still determine how to distribute
from those facilities to the customer locations in the most desirable way. This last pro-
blem we can now recognize as a transportation problem, which we examined in
Chapter 3. Thus, the graph hides two embedded problems: (1) selecting k out of the
m possible locations for facilities in the network and, (2) solving the transportation
problem that arises once the locations are selected.

This type of tradeoff arises in several situations, but perhaps the most familiar
application relates to the location of facilities in a distribution supply chain. For this
reason, the problem is known as the facility location problem (or sometimes, the
plant location problem, or the warehouse location problem). The essential tradeoff bal-
ances the fixed costs of operating discrete sources with the variable costs of providing
service from those sources. In the examples that follow, we distinguish between the
capacitated and uncapacitated version of the problem. The integer programming
model itself represents a variation on the incorporation of fixed costs and the use of
linking constraints.

Figure 7.8. Cost Tradeoff in facility location.
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7.4.1. Capacitated Version

In the classical capacitated facility location problem, the system contains m potential
facility locations and n existing customer demand locations. For facility location i, we
know the capacity (denoted Ci) and the fixed cost of operating the facility (Fi). For each
customer location, we know the demand (dj) and the unit distribution cost (cij) associ-
ated with satisfying demand at location j from capacity at facility i. In this problem
statement, we typically choose a time period, such as a month or a year, as the basis
for the facility costs and the demand quantities. For decision variables, we define

xij = quantity sent from facility i to customer location j

yi = 1 if facility i is used in the design

yi = 0 otherwise

Then the optimization problem can be formulated algebraically as follows.

Minimize z =
∑

i

Fiyi +
∑

ij

cijxij

subject to ∑

i

xij ≥ dj (7.1)

∑

j

xij ≤ Ci (7.2)

xij ≤ Ciyi (7.3)

As stated, the problem contains a transportation model, represented by constraints
(7.1) and (7.2), along with the linking constraints in (7.3). The linking constraints
ensure that if we distribute from facility location i (i.e., xij . 0 for some j), then we
incur the corresponding fixed cost Fi in the objective function (by forcing yi to be
1). Conversely, if we want to avoid the fixed cost Fi, then we must have yi ¼ 0,
which prevents the use of facility location i.

The model contains mn variables xij along with m variables yi, for a total of
m(n + 1) variables. There are n constraints of type (7.1), m constraints of type (7.2),
and mn constraints of type (7.3), for a total of mn + m + n.

A more streamlined version of the same problem replaces constraints (7.2) and
(7.3) with a single type of constraint

Minimize z =
∑

i

Fiyi +
∑

ij

cijxij

subject to: ∑

i

xij ≥ dj (7.4)

∑

j

xij ≤ Ciyi (7.5)
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In this formulation, constraint (7.5) represents the linking constraint between the
binary variable yi and all of the quantities distributed from facility location i. This
same inequality serves as the capacity constraint as well: when yi ¼ 1, the constraint
matches (7.2) above; when yi ¼ 0, facility location i is not used, so there is no need to
constrain its capacity. This more streamlined model contains m(n + 1) variables, as
before, but now the number of constraints is just m + n, quite a bit smaller than in
the original model. To make the location model more concrete, we consider an
example.

EXAMPLE 7.3 Van Horne Appliance Company

The Van Horne Appliance Company is a manufacturer of home appliances with nationwide dis-
tribution. Van Horne is designing its supply chain from scratch, having purchased some smaller
companies in the last year. Its main candidates for distribution centers (DCs) are New York,
Atlanta, Chicago, and Los Angeles. Each of these locations can accommodate annual volumes
of up to 150,000 units, but they would require different levels of operating expense, as estimated
in the table below.

DC Location New York Atlanta Chicago Los Angeles

Annual cost (000s) $6000 $5500 $5800 $6200

One or more of these DCs will service Van Horne’s four sales regions (East, South, Midwest,
and West). For each combination of DC and sales region, Van Horne has estimated the average
transportation cost per thousand units shipped.

(To) region

(From) DC East South Midwest West Capacity

New York $206 $225 $230 $290 150,000
Atlanta 225 206 221 270 150,000
Chicago 230 221 208 262 150,000
Los Angeles 290 270 262 215 150,000

Requirement 100,000 150,000 110,000 90,000

The design problem facing the supply-chain manager at Van Horne is to determine which
DC locations to use, based on operating expense and total distribution cost. B

Figure 7.9 shows a worksheet for the model. The Data section contains an array
structured much like the transportation model, with rows for the potential DC locations
and columns for the sales regions. For each row, the capacity (in thousands) is entered
on the right-hand side of the array, in column G. For each column, the annual demand
(in thousands) is entered at the bottom of the array. Annual fixed costs (in thousands)
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appear in column B, and the variable cost (per thousand) corresponding to each com-
bination of DC location and customer region appears in the range C5:F8.

The Decisions section of the spreadsheet contains an array for decision variables.
Column B holds the values of the yi variables. The preliminary solution shown in the
figure uses all four DC locations, so the entries in this column are all 1s. The range
C12:F15 contains a solution to the transportation subproblem that constitutes the
kernel of the model, although this solution may not be optimal. Finally, the array
I12:L15 contains the left-hand side of the linking constraints corresponding to
(7.3), expressed in the form xij 2 Ciyi. Thus, the linking constraints are satisfied
when each element in this array is less than or equal to zero.

Finally, the Objective section contains the evaluation of costs. The total operating
cost in cell C18 and the total distribution cost in E18 are added to generate the total cost
in G18. The model specification is as follows.

Objective: G18 (minimize)
Variables: B12:F15
Constraints: G12:G15 ≤ G5:G8

C16:F16 ≥ C9:F9
I12:L15 ≤ 0
B12:B15 = binary

Solver finds an optimal solution that achieves a cost of $115,770 by using the
New York, Atlanta, and Los Angeles DC locations, as shown in Figure 7.10. As
the transportation kernel shows, the optimal solution ships from New York to both
the East and Midwest and from Los Angeles to both the Midwest and West, while ship-
ping to the South from Atlanta. By formulating and solving an integer programming
model for its location problem, Van Horne can implement its national supply chain in
the most cost-effective fashion.

Figure 7.9. Spreadsheet model for Example 7.3.
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The streamlined version, shown in Figure 7.11, finds the same optimal solution
with a model formulation that contains half as many constraints. The specification
of the problem is as follows.

Objective: G18 (minimize)
Variables: B12:F15
Constraints: C16:F16 ≥ C9:F9

I12:I15 ≤ 0
B12:B15 = binary

Figure 7.10. Optimal solution for Example 7.3.

Figure 7.11. Alternative model for Example 7.3.
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Two changes from the previous model are present. First, no explicit capacity con-
straints appear because these are combined with the linking constraints. Second,
one linking constraint appears (cells I12:I15) for each potential DC location, rather
than one for each combination of DC location and sales region. Its left-hand side is
expressed in the form

∑
j xij – Ciyi.

The facility location model can be thought of as the strategic version of the trans-
portation problem, in the sense that the warehouse or DC locations are treated as given
in the transportation problem but as choices in the facility location problem.
Associated with these choices are the fixed costs of operating a facility, and these
costs are incorporated into the model with the help of linking constraints.

7.4.2. Uncapacitated Version

In the classical uncapacitated facility location problem, no capacity constraints are
associated with the potential facility locations. In a supply-chain design setting, this
might be the case if capacities are completely flexible and can be determined after
the facility locations are selected. The model of the capacitated case can be adapted
to the uncapacitated case in different ways.

Perhaps the simplest way to represent the uncapacitated version of the model is to
use the capacitated version with very large capacities. For example, the capacity at
each facility location could be set equal to the sum of all demands. In symbols, this
means setting

Ci =
∑

j

dj

In this formulation, capacity constraints do not inhibit the selection of facility locations
based on cost, and the linking constraints ensure correct accounting for the fixed oper-
ating costs. Figure 7.12 shows the corresponding spreadsheet layout. The only change
(in the streamlined version) from the formulation of the capacitated model is the value
of 450, which appears in the role of capacity, in the range G5:G8. When we optimize
this model, we find that the minimum cost drops to $107,510, as shown in Figure 7.12,
and that the optimal configuration is to use only the Atlanta location. Without capacity
constraints, we anticipate that the optimal cost should be lower than the optimal cost
for the capacitated model. However, it may be surprising to find that the complete
relaxation of the capacity constraints leads to modest savings. Compared to the capaci-
tated version, the uncapacitated configuration saves $8260 (¼ 115,770 2 107,510) or
about 7 percent.

An alternative modeling approach is based on an insight about the nature of opti-
mal transportation patterns in the uncapacitated case. In the capacitated model of
Figure 7.11, for example, Midwest demand is met from two sources—New York
and Los Angeles. This kind of split would not occur in an optimal solution to the unca-
pacitated version of the problem because there is never an incentive to meet demand
from two sources. In the example, it is cheaper to supply Midwest sales from
New York than from Los Angeles, so there would be no reason to ship from Los
Angeles to the Midwest. (In fact, if the Atlanta location is in use, there is no reason
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to ship from New York, either.) A general property of the uncapacitated model is that
an optimum exists in which each demand is met from just one source. In particular,
demand should be met from the least expensive source among the facility locations
in the solution. Therefore, we don’t really need the xij variables. Instead, we can define

uij = 1 if facility i serves demand j

= 0 otherwise

In words, uij indicates whether demand in region j is met from facility i. When uij ¼ 1,
we know that the corresponding distribution cost must be equal to (cijdj)uij, since the
entire demand quantity dj will be met from the one source. Accordingly, the (stream-
lined) formulation takes the following form.

Minimize z =
∑

i

Fiyi +
∑

ij

(cijdj)uij

subject to

∑

i

uij ≥ 1 (7.6)

∑

j

uij ≤ nyi (7.7)

The number (n) of demand regions appears in (7.7) because it is the largest possible
value for the sum on the left-hand side. Finally, although the variables uij take on
values of zero or one, we do not have to declare them as binary because the

Figure 7.12. Optimal solution for the unconstrained model.
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optimization will always lead to a 0-1 solution when the uij are treated as continuous
variables. Thus, we specify the model in Figure 7.13 as follows.

Objective: G18 (minimize)
Variables: B12:F15
Constraints: C16:F16 ≥ 1

I12:I15 ≤ 0
B12:B15 = binary

Figure 7.13 displays an optimal solution for the spreadsheet containing
the alternative unconstrained model. We can confirm the optimal total cost of
$107,510, and an optimal design calling for a facility in Atlanta to supply the entire
set of demands. In the spreadsheet, the following changes have been made from the
model in Figure 7.12.

† The “very large” capacities formerly in cells G5:G8 are no longer needed.

† The Sent totals now show the number of regions served from a warehouse rather
than the quantity shipped.

† A typical linking constraint follows the form of (7.7). For example, the formula
in cell I12 is now =G12–$G$9∗$B12.

† The Total Distribution Cost array in I5:L8 holds the terms (cijdj) from the
objective function. These are calculated from the original array of unit
costs and demands in each region. Then, the Distribution component of
total cost in cell E18 is calculated with the Excel formula
=SUMPRODUCT(I5:L8,C12:F15).

The uncapacitated facility location problem is sometimes just the central portion
of a larger and more complicated design problem. One reason why it is desirable to use

Figure 7.13. Optimal solution for the alternative unconstrained model.
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uij variables in the formulation is that other kinds of constraints, particularly logical
conditions, may apply to the potential facility locations. For example, suppose we
want to distribute to at most one customer location from New York. To achieve this
requirement, add the constraint u11 + u12 + u13 + u14 ≤ 1. As discussed earlier in
the chapter, logical constraints can often be developed in linear form with the help
of binary variables, or at least variables that behave as if they were binary.

We have examined two alternative modeling approaches to both the capacitated
and uncapacitated problems. These alternatives are based on the streamlined linking
constraint, using (7.5) in place of (7.3). One advantage of the streamlining is that
there are fewer elements on the spreadsheet, so the model is easier to build and
debug. However, there is a potential downside. The streamlined version may require
more computational effort than the original version to locate an optimum. This differ-
ence could be important in larger models, with perhaps dozens of facility locations and
hundreds of customer demands.

7.5. DISJUNCTIVE CONSTRAINTS: THE MACHINE
SEQUENCING PROBLEM

Scheduling and sequencing problems are notoriously difficult to solve, but some
progress is possible with the use of integer programming. In the basic machine-
sequencing problem, one processor (or machine) is available to process several
jobs. The jobs are all ready for processing at the outset (time zero), but the machine
can accommodate only one job at a time. The jobs are described by a processing
time ( pj for job j) and a due date (dj).

Depending on the sequence chosen, job j will start processing at time sj and com-
plete its processing at time sj + pj. If a job completes after its due date, then the job is
said to be tardy, and its tardiness is measured by (sj + pj) – dj. On the other hand, if a
job completes on or before its due date, then the job is on time, and its tardiness is zero.
In other words, a job’s tardiness may be zero, but it can never be negative. One way
of measuring schedule performance is to sum the tardiness of all jobs, thus computing
the total tardiness in the schedule. A common objective in scheduling is to minimize
total tardiness, as a means of quantifying the effectiveness of a schedule at meeting
due dates. The use of total tardiness as a performance measure prevents one job’s
earliness from offsetting another’s lateness, thereby focusing attention on jobs that
miss their due dates. Obviously, when total tardiness is zero, this means that all due
dates have been met.

As an example, Miles Manufacturing faces a version of the machine sequencing
problem.

EXAMPLE 7.4 Miles Manufacturing Company

Miles Manufacturing Company is a regionally focused production shop that fabricates metal
components for auto companies. Its scheduling efforts center around a large piece of equipment
that handles a variety of operations, such as drilling, shaping, polishing, and mechanical testing.
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Work arrives at the machine in batches—each batch corresponding to a customer order—and the
information system provides data on the size of the order, how long it will take to process, and
when it is due (the due dates having been previously negotiated with customers). These due
dates, which apply to completion in the shop, are adjusted for the delivery time needed to put
the completed order in the customer’s hands. When several orders are waiting to be processed,
the supervisor looks for guidance on how the orders should be sequenced. The minimization of
total tardiness is an accepted criterion for a schedule.

This morning’s workload consists of six jobs, as described in the following table.

Job number 1 2 3 4 5 6

Processing time (hours) 5 7 9 11 13 15
Due date (hours from now) 28 35 24 32 30 40

The problem is to sequence the six jobs so that work can begin. With 60 total hours of work to
schedule, and a latest due date of 40, it is obvious that the jobs cannot all be finished on time, and
some tardiness will occur even in the best schedule. B

The optimization problem is to select a sequence for the jobs that minimizes total
tardiness. For decision variables we can use the job start times, sj. The key feasibility
constraints reflect the fact that, for any pair of jobs j and k, either k follows j or else
j follows k. In other words, either job j completes before k starts, or else job k com-
pletes before j starts. In symbols, either

sj + pj ≤ sk or sk + pk ≤ sj

These are called disjunctive constraints, meaning that one or the other—but not
both—must hold for a solution to be feasible. To represent this requirement in an
integer program, we use the following pair of constraints

sj + pj ≤ sk + M(1 − yjk)

sk + pk ≤ sj + Myjk

where yjk is a binary variable and M represents a nonrestrictive large value, such as the
sum of all the processing times. When yjk ¼ 1, the first constraint forces the start of job
k to be at least as late as the completion of job j, and the second constraint does not
restrict the choice of variables. On the other hand, when yjk ¼ 0, the first constraint
does not restrict the choice of variables, and the second constraint forces the start of
job j to be at least as late as the completion of job k. In other words

yjk = 1 if job k follows job j, and zero otherwise.

ykj = 1 if job j follows job k, and zero otherwise.

We can also rewrite the constraint pair with all variables moved to the left-hand
side and parameters on the right-hand side, thus obtaining the following pair of con-
straints

s j − sk + My jk ≤ M − p j

s j − sk + My jk ≥ pk
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Expressed this way, the left-hand sides of these conditions are identical, which allows
for some efficiency in building the spreadsheet model. In addition to the disjunctive
constraints, we need constraints that track the tardiness of job j, which is denoted
by tj. This can be accomplished by treating tj as a nonnegative decision variable
and imposing the following constraint

t j ≥ s j + p j − d j

When job j is on time, the right-hand side of this constraint will be negative or zero, so
the tardiness variable tj will become zero because all variables are nonnegative by
assumption. Otherwise, the constraint will be tight (because the objective is to
make total tardiness as small as possible), and the tardiness variable tj will be equal
to the right-hand side. We can also write this constraint with decision variables on
the left and parameters on the right, as follows

s j − t j ≤ d j − p j

An algebraic statement of the entire model follows.

Minimize z =
∑

t j

subject to:

sj − sk + Myjk ≤ M − pj, for all job pairs j , k

sj − sk + Myjk ≥ pk, for all job pairs j , k

sj − tj ≤ dj − pj, for all jobs j

A spreadsheet model for Miles Manufacturing is shown in Figure 7.14. The first
module of the spreadsheet contains the data for the problem. The next module contains
the three types of decision variables: start times (sj), tardiness values (tj), and binary
variables ( yjk, needed only for j , k). As usual, the decision variables are highlighted.
The third module is a one-cell module containing the objective function, which is just
the sum of the job tardiness values.

Although we need the variables yjk only for j , k, the worksheet also shows yjk for
j . k. In the worksheet, these values are not highlighted, signifying that they are not
decision variables. Instead, their values are calculated directly from the decision vari-
ables. For example, once we know the value of y12, then it follows that y21 is its binary
complement.

The last module contains the constraints of the problem. First, we see the LT
inequalities sj – tj ≤ dj – pj. These are expressed in rows 22–24, in the columns cor-
responding to the respective jobs. Next, we see the disjunctive constraints in rows
27–41. Each row contains a disjunctive pair, one expressed as an LT constraint and
the other expressed as a GT constraint, each with the same left-hand side. The left-
hand side appears in column G, while the right-hand sides appear in columns I and K.
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We specify the problem as follows.

Objective: I18 (minimize)
Variables: C9:H10,D12:H12,E13:H13,F14:H14,G15:H15,H16
Constraints: C22:H22 ≤ C24:H24

G27:G41 ≥ I27:I41
G27:G41 ≤ K27:K41
D12:H12 = binary
E13:H13 = binary
F14:H14 = binary
G15:H15 = binary
H16 = binary

Figure 7.14. Spreadsheet model for Example 7.4.
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The worksheet in Figure 7.14 contains an optimal sequence. Although the order
of the start times tells us that an optimal sequence is given by 5-3-1-2-4-6, we can also
determine the sequence from the full array of yjk values. In cells I12–I17, we sum the
entries in the corresponding row of the array. This value tracks the number of jobs
following the job in that row. For example, three jobs come after job 1, indicating
that job 1 is third in sequence. We can then construct the optimal sequence in row
20 by using these numbers and the MATCH function. Thus, after downloading
processing times and due dates from the central information system and then using
an integer programming model, Miles Manufacturing can construct optimal sequences
on the supervisor’s spreadsheet.

The sequencing model is more general than Example 7.4 might suggest
because it can accommodate other objective functions as well. For example, instead
of minimizing the total tardiness in the schedule, we might instead want to minimize
the number of tardy jobs. In other situations, there could be a contractual penalty deter-
mined by a job’s delay, and the criterion could be minimization of delay penalties.
Sequencing problems with a variety of criteria can fit into this framework, where dis-
junctive constraints enable the problem to be solved as an integer linear program.

More generally, disjunctive constraints are appropriate whenever we encounter
situations in which we want at least one constraint out of a pair to apply. Suppose
we have a pair of LT constraints in our model

LHS1 ≤ RHS1

LHS2 ≤ RHS2

Suppose also that we wish to have at least one of these two constraints satisfied. We
can then represent the two constraints in our model as follows.

LHS1 ≤ RHS1 + My

LHS2 ≤ RHS2 + M(1 − y)

With the additional terms, the binary variable y determines which constraint will be
met automatically. When y ¼ 1, the right-hand side of the first constraint becomes
quite large, and the constraint is satisfied for any choice of the other variables in the
model. The right-hand side of the second constraint is unaffected, so the other vari-
ables must be chosen to be feasible in that constraint. When y ¼ 0, the right-hand
side of the second constraint becomes quite large, and the other variables must be
chosen to be feasible in the first constraint.

7.6. TOUR AND SUBSET CONSTRAINTS: THE
TRAVELING SALESPERSON PROBLEM

In the traveling salesperson problem (TSP), a sales rep has several customers to visit,
each in a separate city. The sales rep knows the distances between pairs of cities and
must plan a trip that visits each of the cities once and returns home. This type of trip is
called a tour. Specifically, the sales rep would like to plan a tour that has the minimum
total distance.
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The given information in the TSP is an array of distances. In the literal version of
the problem, we might expect the distances to be symmetric—that is, the distance from
A to B should be the same as the distance from B to A. However, there are applications
where the distances need not be symmetric. For example, a paint booth may or may not
need cleaning between two successive products on the production line. If two succes-
sive items use the same color of paint, then there is no cleaning required. But if the
items require different colors, then there is a need to clean out the painting equipment.
The time required depends on the paint color just finishing and on the paint color about
to begin. The (i, j)th entry in the data array represents the time required to clean the
equipment between color i and color j, and it need not be the same as the cleaning
time between j and i. In a complete cycle through the products, with one batch for
each color, the painting time is fixed, but the length of the schedule is minimized
when the total cleaning time is minimized. Total cleaning time is in turn the total
length of a tour in the array of cleaning times. As an example, consider the Douglas
Electric Cart Company.

EXAMPLE 7.5 Douglas Electric Cart Company

The Douglas Company assembles small electric vehicles which are sold for use on golf courses,
at university campuses, and in sports stadiums. In these markets, customers like to buy in a var-
iety of colors, so Douglas offers several choices. As a result, its manufacturing operations
include a sophisticated painting operation, which is separately scheduled.

Today’s schedule contains six colors (C1–C6) with cleaning times as shown in the table
below.

C1 C2 C3 C4 C5 C6

C1 – 16 63 21 20 6
C2 57 – 40 46 69 42
C3 23 11 – 55 53 47
C4 71 53 58 – 47 5
C5 27 79 53 35 – 30
C6 57 47 51 17 24 –

The entry in row i and column j of the table gives the cleaning time required between product
lots of color Ci and color Cj. Each production run consists of a cycle through the full set of
colors, and the operations manager wishes to sequence the colors so that the total cleaning
time in a cycle is minimized. B

Returning to the traveling salesperson terminology, we refer to the colors in a pro-
duction cycle as cities, and we refer to the cleaning time objective as the total distance.
For example, if the painting schedule calls for the color sequence given by the cycle

1-2-3-4-5-6-1

then the total distance (cleaning time in the cycle) is 16 + 40 + 55 + 47 + 30 +
57 ¼ 245. We would like to know whether this is the minimum.
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As a first cut at an optimization model, we define the following decision variables

xij = 1 if the city pair (i, j) occurs on the tour.

xij = 0 otherwise.

We can imagine an array of xij variables in an array the same size as the table of dis-
tances, although we do not need to use the variables xii on the diagonal. Next, we can
recognize that any tour must enter each city once and leave each city once. Therefore,
in order for the decisions to be feasible, only one of the entries in each row of the
decision array can equal 1 (one departure route from each city) and only one of the
entries in each column can equal 1 (one entry route into each city.) Another way to
state this requirement is that the sum along each row and the sum along each
column must be equal to 1. When we impose these constraints, we are essentially for-
mulating an assignment problem, as discussed in Chapter 3. (See Figure 3.6 for an
example.) The assignment problem requires a 1 in every row and a 1 in every
column, and its objective function is the SUMPRODUCT of the cost (distance)
array and the decision array.

To build a spreadsheet model for the optimization problem, we first enter the
given array of distances, as in Figure 7.15. To the right of the data we construct another
array for the decision variables xij. For each entry in the table of cleaning times, we
have a corresponding decision variable. Along the diagonal of the distance array,
we have entered arbitrarily large distances, to discourage the use of decision variables
xii. In the figure, we display the x-values corresponding to the cycle 1-2-3-4-5-6-1. The
objective function is the SUMPRODUCT of the data array and the decision array,
which for this sequence yields the value 245.

To find a solution, we specify the problem as follows.

Objective: B12 (minimize)
Variables: K5:P10
Constraints: Q5:Q10 = 1

K11:P11 = 1

Figure 7.15. Distance array and decision array for Example 7.5.
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Figure 7.16 shows the result, which has an optimal objective function value of
120. Unfortunately, when we try to interpret the decision variables as a route for
the sales rep, we do not obtain a tour. Starting at city 1, the tour goes to city 5, but
then it returns to city 1. Alternatively, if we start at city 4, the tour goes to city 6
and then returns to city 4. We actually have three separate routes, called subtours,
but no tour that visits all the cities. The subtours are listed in rows 13–15 of the spread-
sheet, after Solver’s run. Evidently, the assignment problem constraints, which assure
an entry of 1 in every row and every column, are not sufficient to guarantee that we can
interpret the result as a tour. We must impose additional constraints. Adding con-
straints that create a tour does not sound like it will involve linear constraints, but it
is not difficult to accomplish, as we discuss next.

To proceed toward a solution, we have to add constraints that eliminate the
subtours we encountered. In the solution of Figure 7.17, suppose we focus on the
subtour involving cities 4 and 6. (If we can eliminate the subtour 4-6-4, that will sim-
ultaneously eliminate at least one of the other subtours. If we are fortunate, all three
subtours will be eliminated.) To prohibit the tour 4-6-4, we add the following
constraint

x46 + x64 ≤ 1

Assuming, for the moment, that the x-values are binary variables, this constraint states
that between the pair (4, 6), we can have at most one link on the tour. We place the left-
hand side of this constraint as a formula in cell E15 (under the heading “length”), and
we place the right-hand side in cell G15 (under the heading “limit”) as shown in
Figure 7.17. Now we can re-run the model with the additional constraint, hoping
that it will produce a tour.

Figure 7.16. Solution to the assignment model for Example 7.5.
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This time, we specify the problem as follows.

Objective: B12 (minimize)
Variables: K5:P10
Constraints: Q5:Q10 = 1

K11:P11 = 1
E15 ≤ G15

Figure 7.17 shows the solution. The objective function increases from 120 to 128,
which is not surprising, given that we added a constraint to eliminate part of the pre-
vious solution. However, we still do not have a tour. Two subtours (1-4-6-5-1 and 2-3-
2) appear in the solution, so we must add another elimination constraint. For conven-
ience, we choose the smaller subtour and focus on 2-3-2. The appropriate constraint to
add is the following

x23 + x32 ≤ 1

We place the left-hand side in cell E16 and the right-hand side in G16, and we
again re-run the model, with the following specification.

Objective: B12 (minimize)
Variables: K5:P10
Constraints: Q5:Q10 = 1

K11:P11 = 1
E15:E16 ≤ G15:G16

This time we obtain an objective function value of 143, and subtours of 1-2-3-1 and
4-6-5-4, as shown in Figure 7.18.

Figure 7.17. Solution for Example 7.5 with one elimination constraint.
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Once more, we pursue the elimination strategy. Of the two 3-city subtours,
suppose we choose to eliminate 4-6-5-4. The constraint is as follows.

x45 + x46 + x54 + x56 + x64 + x65 ≤ 2

This constraint prohibits the subtour 4-6-5-4, and while we’re at it, the subtour 4-5-6-4.
In other words, we permit at most two links on the tour from the routes involving these
three cities. The left-hand side of the constraint includes all possible city pairs from the
set of cities on the subtour; the right-hand side of the constraint is one less than the
number of cities in the subtour. We use cells E17 and G17 for the new constraint
and re-run the model. This time the objective function increases to 147.5, with a non-
integer solution, as shown in Figure 7.19.

Therefore, we impose the requirement that all decision variables must be binary,
specifying the problem as follows.

Objective: B12 (minimize)
Variables: K5:P10
Constraints: Q5:Q10 = 1

K11:P11 = 1
E15:E17 ≤ G15:G17
K5:P10 = binary

Now that we are solving an integer programming problem, we must remember to
ensure that the Integer Tolerance is zero. Then we proceed with Solver. Figure 7.20
displays the solution, which contains two subtours and achieves an objective function
of 160.

Figure 7.18. Solution for Example 7.5 with two elimination constraints.
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We pursue the elimination strategy one more time, eliminating the subtour 1-5-1.
Having updated the model as shown in Figure 7.21, we specify the problem as follows.

Objective: B12 (minimize)
Variables: K5:P10
Constraints: Q5:Q10 = 1

K11:P11 = 1
E15:E18 ≤ G15:G18
K5:P10 = binary

Figure 7.19. Solution for Example 7.5 with three elimination constraints.

Figure 7.20. Solution for Example 7.5 with integer requirements.
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This time, the optimal solution provides a complete tour, 1-2-4-6-5-3-1, with a length
of 167, as shown in Figure 7.21. By using an integer programming approach, Douglas
Electric Cart Company can find the color sequence that requires the minimum cleaning
time in a production cycle, thus allowing the firm to make efficient use of its expensive
painting equipment.

The solution approach described here begins with an assignment model. The opti-
mal solution to the assignment model as a linear program is guaranteed to contain vari-
ables that are 0 or 1, as discussed in Chapter 3. However, the solution may or may not
represent a tour. If it does, we are fortunate, obtaining a solution to a potentially diffi-
cult model with a single use of linear programming. More likely, we find that the sol-
ution contains subtours. In that case, we pursue the strategy of imposing what are
known as subtour elimination constraints. One at a time, we can add a constraint
that prohibits a subtour found in the previous optimal solution. The subtour constraint
sums the values of all the decision variables involving the city pairs in the subtour, and
requires that the sum must be less than the number of cities on the subtour.

Each time we add a subtour elimination constraint, the objective function is likely
to increase, although sometimes it may stay the same. At some stage, we may have to
impose the requirement that all variables must be binary, but that is not necessary until
we encounter a linear programming solution containing fractions. Eventually, this
iterative procedure leads to an optimal solution to the TSP.

A reasonable question to ask is why add the constraints one at a time? Of course,
when we start out, we don’t know which subtours we need to eliminate. However, we
could add constraints that eliminate all possible subtours. The problem is that this may
be a very large number of constraints. If there are n cities in the original problem, then
the number of constraints that would eliminate all subtours is 2n – 1 – n – 1. Consider

Figure 7.21. Optimal solution for Example 7.5.
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that when n is 12, the number of constraints is over 2000, not to mention that we would
find it very tedious to enter those constraints. The empirical finding seems to be that
only a very small fraction of the number of potential constraints is ever really
needed to obtain an optimal solution using the iterative procedure we have illustrated.
In our example, which contained six cities, we would have needed 25 constraints to
guarantee an optimal solution with one model, but we found that we needed only
four constraints when we implemented the one-at-a-time approach. (Most six-city pro-
blems require fewer than that.) Problems with 12, 15, or even 20 cities are usually
within the reach of spreadsheet-based solution approaches because the relatively
small number of elimination constraints actually needed is well within Solver’s
limits. The limiting factor is the time required to solve the necessary series of integer
programs en route to a final solution.

Applications of the TSP occur frequently in manufacturing and logistics, and
some very powerful solution methods, tailored to the TSP, have been developed for
repeated use or for tackling especially large versions. The main purpose here is to illus-
trate a complex logical constraint (the tour requirement) and to demonstrate that it is
possible to apply integer programming techniques effectively for nontrivial problem
sizes. Large-scale applications require prohibitive amounts of time from Solver, and
in those cases, it would be necessary to look elsewhere for a method specialized to
the TSP.

SUMMARY

The ability to treat variables as integer-valued, and, in particular, the ability to designate certain
variables as binary, opens up a wide variety of optimization models that can be addressed with
Solver. As illustrated in Chapters 6 and 7, Solver’s branch and bound capability can handle three
broad types of models.

† The first type is one that resembles a linear program but with the requirement that certain
variables must be integer valued. In Solver, this requirement is added as a constraint.

† The second type is one in which certain decisions exhibit an all-or-nothing structure,
reflecting actions that are indivisible. This is a role for a binary variable, which is
simply an integer-valued variable no less than zero and no greater than one. Such a vari-
able allows us to model the occurrence of yes/no choices and to use Solver, provided
that the structure of the model is linear in all other respects.

† The third type is one in which binary variables are used to capture certain logical con-
straints in linear form. We don’t often think of logical constraints as being so closely
related to the inequalities of linear programs, so it takes some modeling practice to
appreciate how to make this connection. As the examples illustrate, binary variables
are useful in representing linking constraints for fixed costs, disjunctive constraints
for sequencing problems, and tour constraints for routing problems.

The categories that rely on binary variables include a number of well known combinatorial
problems. For many of these problems, large instances can take a great deal of time to solve,
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whether the solution technique is based on an integer programming formulation or some other
approach. In the case of sequencing problems or TSPs, instances with more than 20 elements
might create a substantial computational burden for Solver, even though the sizes of the
examples in this chapter do not suggest any computational difficulty. In moving to a larger
scale, it may be helpful to reset the Integer Tolerance parameter to a more forgiving level,
such as 5 percent, while exploring the Solver’s response time. It may also be helpful to set a
generous time limit (Max Time) on the Engine tab of the task pane, in case the computational
burden is greater than anticipated.

EXERCISES

7.1. Moore Office Products (Revisited) Revisit the Moore Office Products example of this
chapter, where there have been some revisions in the problem’s data. The information is
summarized below.

Family Demand Contribution Fixed cost

F1 290,000 $1.20 $60,000
F2 200,000 1.80 200,000
F3 50,000 2.30 55,000

Each product requires work on three machines. The standard productivities and capacities
are given below.

Machine

Hours per 1000 units
Hours

availableF1 F2 F3

A 3.205 3.846 7.692 1900
B 2.747 4.808 6.410 1900
C 1.923 3.205 9.615 1900

(a) Determine which products should be produced, and how much of each should be
produced, in order to maximize profit contribution.

(b) Suppose the demand potential for F3 is doubled. What is the maximum profit contri-
bution? How much of each product should be produced?

7.2. Selecting R&D Projects The Northeast Communications Company (NCC) is contem-
plating a research and development program encompassing eight major projects. The
company is constrained from embarking on all of the projects by the number of available
scientists (40) and the budget available for project expenses ($300,000). The following
table shows the resource requirements and the estimated profit for each project.
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Expense Scientists Profit
Project ($000) required ($000)

1 60 7 36
2 110 9 82
3 53 8 29
4 47 4 16
5 92 7 56
6 85 6 61
7 73 8 48
8 65 5 41

(a) What is the maximum profit, and which projects should be selected?

(b) Suppose that management determines that projects 2 and 5 are mutually exclusive.
What is the revised project portfolio and the revised maximum profit?

(c) Suppose that management also decides to undertake at least two of the projects invol-
ving consumer products. (These happen to be projects 5–8.) What is the revised pro-
ject portfolio and the revised maximum profit?

7.3. Vendor Allocation with Price Breaks Universal Technologies, Inc. has identified two
qualified vendors with the capability to supply some of its electronic components. For the
coming year, Universal has estimated its volume requirements for these components and
obtained price-break schedules from each vendor. (These are summarized as “all-units”
price discounts in the table below.) Universal’s engineers have also estimated each ven-
dor’s maximum capacity for producing these components, based on available information
about equipment in use and labor policies in effect. Finally, because of its limited history
with Vendor A, Universal has adopted a policy that permits no more than 60% of its total
unit purchases on these components to come from Vendor A.

Vendor A Vendor B

Unit Volume Unit Volume
Product Requirement price required price required

1 500 $225 0–250 $224 0–300
$220 250–500 $214 300–500

2 1000 $124 0–600 $120 0–1000
$115 600–1000 (no discount)

3 2500 $60 0–1000 $54 0–1500
$56∗ 1000–2000 $52 1500–2500

$51 2000–2500
Total capacity (units) 2500 2000

∗For example, if 1400 units are purchased from Vendor A, they cost $56 each, for a total of $78,400.

What is the minimum-cost purchase plan for Universal?
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7.4. Incremental Quantity Discount In the previous exercise, suppose that Vendor A
provides a new price-discount schedule for component 3. This one is an “incremental”
discount, as opposed to an “all-units” discount, as follows.

Unit price ¼ $60 on all units up to 1000

Unit price ¼ $56 on the next 1000 units

Unit price ¼ $51 on the next 500 units

With the change in pricing at Vendor A, what is the minimum purchasing cost for
Universal, and what is the impact on the optimal purchase plan (compared to the one
in the previous exercise)?

7.5. Plant Location The Spencer Shoe Company manufactures a line of inexpensive shoes
in one plant in Pontiac and distributes to five main distribution centers (Milwaukee,
Dayton, Cincinnati, Buffalo, and Atlanta) from which the shoes are shipped to retail
shoe stores. Distribution costs include freight, handling, and warehousing costs. To
meet increased demand, the company has decided to build at least one new plant with
a capacity of 40,000 pairs per week. Surveys have narrowed the choice to three locations,
Cincinnati, Dayton, and Atlanta. As expected, production costs would be low in the
Atlanta plant, but distribution costs are relatively high compared to the other two
locations. Other data are as follows.

To distribution

Distribution costs per pair
from

Demand
(pairs/wk)centers Pontiac Cincinnati Dayton Atlanta

Milwaukee $0.42 $0.46 $0.44 $0.48 10,000
Dayton 0.36 0.37 0.30 0.45 15,000
Cincinnati 0.41 0.30 0.37 0.43 16,000
Buffalo 0.39 0.42 0.38 0.46 19,000
Atlanta 0.50 0.43 0.45 0.27 12,000

Capacity (pairs/wk) 32,000 40,000 40,000 40,000
Production cost/pair $2.70 $2.64 $2.69 $2.62
Fixed cost/wk $7000 $4000 $6000 $7000

(a) Assume that Spencer Shoe Company will keep operating at Pontiac and build a plant
at one of the three new alternatives. Which alternative will lead to the lowest total cost,
including production, distribution, and fixed costs, and what is the minimum weekly
cost?

(b) Assume that Spencer Shoe Company could start from scratch and operate any com-
bination of the four plants. Determine the plant locations that minimize total cost.
Compared to the result in part (a), how much weekly cost could be saved with the
optimal system design?

7.6. Landfill Location The Metropolis city council is examining four landfill sites as can-
didates for use in the city’s solid waste disposal network. The monthly costs per ton have
been estimated for operating at each site and for transportation to each site from the
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various collection areas. In addition, the amortized monthly cost for the facility at each
proposed site has also been estimated. The data are shown in the table below.

From
collection

Transportation cost per ton
to

landfill site
Monthly

area L1 L2 L3 L4 tons

A $14 $16 $10 $8 500
B 12 11 12 14 700
C 13 8 9 11 1500
D 10 15 14 12 1000
E 8 12 10 11 1800
F 11 10 8 6 1200

Operating
cost/ton

$8 $10 $9 $11

Fixed cost/
month

$1000 $800 $700 $900

What is the optimal configuration and the minimum system monthly cost?

7.7. Distribution Planning Southeastern Foods has hired you to analyze their distribution
system design. The company has eleven distribution centers, with monthly volumes as
listed below. Seven of these sites can support warehouses, in terms of the infrastructure
available, and are designated by (W).

Center Volume Center Volume

Atlanta (W) 5000 Memphis (W) 7800
Birmingham (W) 3000 Miami 4400
Columbia (W) 1400 Nashville (W) 6800
Jackson 2200 New Orleans 5800
Jacksonville 8800 Orlando (W) 2200
Louisville (W) 3000

Information has been compiled showing the cost per carton of shipping from any
potential warehouse location to any distribution center. Southeastern has standardized
its warehouse design so that all such facilities can handle up to 15,000 cartons in a
month. In addition, the monthly fixed cost for operating one of these warehouses is esti-
mated at $3600. Southeastern could build warehouses at any of the designated locations,
but its criterion is to minimize the total of fixed operating costs and variable shipment
costs.
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Atl Bir Col Jac Jvl Lvl Mem Mia Nash NewO Orl

Atlanta 0.00 0.15 0.21 0.40 0.31 0.42 0.38 0.66 0.25 0.48 0.43
Birmingham 0.15 0.00 0.36 0.25 0.46 0.36 0.26 0.75 0.19 0.35 0.55
Columbia 0.21 0.36 0.00 0.60 0.30 0.50 0.62 0.64 0.44 0.69 0.44
Louisville 0.42 0.36 0.50 0.59 0.73 0.00 0.38 1.09 0.17 0.70 0.86
Memphis 0.38 0.26 0.62 0.21 0.69 0.38 0.00 1.00 0.21 0.41 0.78
Nashville 0.25 0.19 0.44 0.41 0.56 0.17 0.21 0.91 0.00 0.53 0.69
Orlando 0.43 0.55 0.44 0.70 0.14 0.86 0.78 0.23 0.69 0.65 0.00

(a) What is the total distribution cost (fixed warehouse costs plus variable distribution
cost) for the optimal configuration? What is the optimal configuration of locations
to use for the system?

(b) To streamline communications, management requires that each distribution center
must be served by just one warehouse. When this requirement is imposed, how
much does total cost increase, as compared to the cost in (a)?

7.8. Scheduling with Sequence-dependent Setups A painting operation is scheduled in
blocks, where each block involves painting products with a particular color. Cleaning
time is required in between each pair of blocks so that the equipment can be prepared
for the new color. In each cycle there is one block of each color, and the total painting
time is determined by the volume of orders. However, the actual schedule length is deter-
mined by the sequence in which the blocks are scheduled, since the cleaning time depends
on the color in the previous block and the color in the next block. The table below gives the
number of minutes required to clean the equipment, according to the color pair.

Cleaning To color
times 1 2 3 4 5 6

1 – 4 8 6 8 2
From 2 5 – 7 11 13 4
color 3 11 6 – 8 4 3

4 5 7 2 – 2 5
5 10 9 7 5 – 2
6 8 4 3 6 5 –

(a) Find the block sequence that minimizes the amount of time spent in cleaning during a
full cycle.

(b) What is the minimum number of minutes devoted to cleaning?

7.9. Planning a European Tour Recent graduate and amateur world traveler Alastair Bor
is planning a European trip. His preferences are influenced by his curiosity about urban cul-
ture in Europe and by his extensive study of international relations while he was in school.
Accordingly, he has decided to make one stop in each of 12 European capitals in the time he
has available. He wants to find a sequence of the cities that involves the least total mileage.
He has calculated inter-city distances using published data on latitude and longitude,
and applying the geometry for arcs of great circles. These distances are shown below.
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To

Ams Ath Ber Brus Cope Dub Lis Lon Lux Mad Par Rom

Amsterdam – 2166 577 175 622 712 1889 339 319 1462 430 1297
Athens 2166 – 1806 2092 2132 2817 2899 2377 1905 2313 2100 1053
Berlin 577 1806 – 653 348 1273 2345 912 598 1836 878 1184
Brussels 175 2092 653 – 768 732 1738 300 190 1293 262 1173
Copenhagen 622 2132 348 768 – 1203 2505 942 797 2046 1027 1527

From Dublin 712 2817 1273 732 1203 – 1656 440 914 1452 743 1849
Lisbon 1889 2899 2345 1738 2505 1656 – 1616 1747 600 1482 1907
London 339 2377 912 300 942 440 1616 – 475 1259 331 1419

Luxembourg 319 1905 598 190 797 914 1747 475 – 1254 293 987
Madrid 1462 2313 1836 1293 2046 1452 600 1259 1254 – 1033 1308
Paris 430 2100 878 262 1027 743 1482 331 293 1033 – 1108
Rome 1297 1053 1184 1173 1527 1849 1907 1419 987 1308 1108 –

(a) Find a minimum distance tour for Alastair, starting and ending in Brussels.

(b) What is the length of the optimal tour?

7.10. Miles Manufacturing (Revisited) Revisit the scenario of Example 7.4. Suppose we
decide that it is important to distinguish among the levels of importance represented by
the various jobs. In particular, we associate a weighting factor with each job. Now, we
can take our objective to be the total weighted tardiness in the schedule, where a job’s
weighted tardiness is the product of its tardiness and its weight. The weights of the
jobs are listed in the full table of data given below.

Job number 1 2 3 4 5 6

Processing time (hours) 5 7 9 11 13 15
Weight 8 8 6 6 4 2
Due date (hours from now) 28 35 24 32 30 40

(a) What is the total weighted tardiness for the optimal sequence (5-3-1-2-4-6) found in
Example 7.4?

(b) What is the optimal value of total weighted tardiness?

7.11. Locating Emergency Service Bases The Southeast Emergency Management Agency
is planning to establish a number of helicopter bases in a hurricane-prone part of the
country. There are 25 sites under consideration, but the agency has funds to install
only three bases. Using a specialized map, the agency has identified counties that can
be served from each site in less than 15 minutes of response time. (This response time
is considered the maximum desired for the purposes of servicing life-and-death emergen-
cies that might follow a hurricane.)

The data describing the potential sites consist of a census list and an accessibility
matrix. The census list gives the population of each county. The accessibility matrix con-
tains a 1 as its (k, j)th element if county k can be serviced from a base at site j within 15
minutes.

At present, the agency has funds to install just three of the bases, and it wishes to
maximize the population served by the bases. At which sites should the bases be estab-
lished and what is the corresponding population served?
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Case: Hornby Products Company∗

The Hornby Products Company, headquartered in Denver, Colorado, markets a broad line of
handcrafted home furnishings that are produced either in its own plants or by local artisans
working under contract with the company. Hornby Products has established markets throughout
most of the area west of the Mississippi. Its products are distributed to these markets mainly
through a series of specialized manufacturer’s representatives. In a few areas, the company uti-
lizes architectural firms and interior decorators as distributors.

The company has been so successful in western markets that management has decided
to expand its market area to the east. The most recent expansion has been into a region east
of the Mississippi from Illinois to western New York and as far south as Alabama and South
Carolina. The company is currently serving this new region from its warehouse in Denver
and a regional warehouse in St Paul. Sales in the eastern region have grown to such a level
that management has decided to establish a system of distribution warehouses to serve this
market. The company is now asking, how many additional warehouses are needed, and
where should they be located?

History

The Hornby product line contains the full gamut of home furnishings, from heavy pieces of
handcrafted furniture to delicate pottery and statues. The company’s management has always
insisted that the workmanship in its products meet the highest standard. Because of this insis-
tence, the company has attained an industry-wide reputation for outstanding quality. In addition
to product quality, management has also concentrated on the quality of its customer service. As
its reputation for quality and service has spread, the company has begun to experience very rapid
growth. With a vigorous management team, it appears possible to sustain this rapid growth rate
without much difficulty.

The company has several policies that have permitted this growth without major capital
additions. Subcontracting of production has reduced the necessary investment in plant and
equipment. Leasing rather than buying warehouses has practically eliminated investment in
this area. The company has, however, deviated from its minimum investment policy in order
to maintain a high level of customer service. A full line of products is stocked at every distri-
bution warehouse and every effort is made to provide delivery within 24 hours. The company
considers this policy critical to expanding the market for its products.

Hornby Products has contracted with 22 different manufacturer’s representatives and
architectural firms in the expansion east of the Mississippi. As the company’s product line
has become established in that area, the representatives have been placing larger orders,
necessitating more and more shipments from Denver rather than from St Paul. Denver shipments
have been required in order not to drastically deplete the stock at St Paul. This has made it dif-
ficult to adhere to the 24-hour delivery policy. The situation has worsened to the point where
management has concluded that the sales growth will be stifled unless distribution warehouses

∗Adapted from Berry, W.L. and D. Clay Whybark, Computer Augmented Cases in Operations and
Logistics Management (1972) South-Western Publishing. An edited version was graciously provided by
Alan Neebe.
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are set up to serve the eastern region. The final impetus to establish these warehouses was pro-
vided by the representative in Indianapolis, who complained that late delivery of samples had
caused the loss of a sizable contract for the furnishings of a major hotel chain. Hornby
management recognized that this would be an increasing problem if better delivery service
couldn’t be arranged. They went to work on establishing a new distribution system for the east-
ern region.

EXHIBIT 7.1 Potential Warehouse Locations for the New Region
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Alternatives

As a first step in establishing the system, company officers visited each of the cities in which they
had manufacturing representatives. These 22 cities are shown on the map in Exhibit 7.1. (After
initially drawing the map, the company officers decided that Denver should continue to serve
Little Rock and Willow Springs.) Eight of these cities were judged to have sufficient transpor-
tation services and warehouse facilities for distribution warehouses. Preliminary work was done
on estimating the costs and determining the availability of specific facilities. Since company
policy was to lease distribution warehouses, little difficulty was encountered in finding at
least some warehouse space in each of the eight possible cities.

The typical warehouse facility offers a leasing arrangement that follows the cost structure
diagrammed in Exhibit 7.2. The cost structure consists of a fixed cost (F) and a variable cost (V ).
In addition, there is a lower limit (L) and an upper limit (U ) associated with annual volume. The

EXHIBIT 7.2 Cost Structure at a Typical Warehouse

EXHIBIT 7.3 Warehouse Cost Data

W/H Location
Fixed
cost

Variable
cost

Min.
(L)

Max.
(U )

1 Atlanta 2700 6 200 1750
2 Buffalo 2900 8 150 1250
3 Chicago 3500 9 250 2000
4 Cincinnati 2200 7 200 1500
5 Detroit 3300 8 200 1750
6 Pittsburgh 3000 8 200 1500
7 Richmond 2000 6 150 1000
8 St. Louis 1800 5 200 1500
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upper limit is a volume ceiling dictated by material handling equipment: no more than this
amount of product can be moved through the warehouse. The lower limit functions as a guar-
antee of sorts to the leasing company. In each city, lease arrangements require a certain mini-
mum capacity to be leased if a warehouse is established. Specifically, Hornby can choose to
operate at a volume lower than L, but the fixed cost F would be charged in any event. Only
volumes in excess of L incur additional costs, and here the charge is equal to the variable
cost V multiplied by the excess volume. Exhibit 7.3 presents the detailed cost and capacity
estimates.

For the purposes of evaluating expansion alternatives, sales levels have been forecast
two years into the future. Detailed sales forecasts for each representative have been converted
to hundredweights (cwt) sold annually at each location. (The term hundredweight refers
to 100 pounds of product.) At Hornby Products Company, the use of hundredweights as
a unit of measure turns out to be a relatively accurate means of aggregating demand, and it
is convenient in working out transportation costs. The sales forecasts are given in Exhibit 7.4.

EXHIBIT 7.4 Forecast for Annual Demands

Rep. no. Location Volume

1 Atlanta 275
2 Birmingham 160
3 Buffalo 240
4 Charleston 260
5 Charlotte 135
6 Chattanooga 160
7 Chicago 400
8 Cincinnati 200
9 Cleveland 320
10 Columbus 220
11 Detroit 190
12 Evansville 100
13 Ft Wayne 140
14 Indianapolis 310
15 Knoxville 125
16 Louisville 340
17 Memphis 240
18 Nashville 210
19 Peoria 150
20 Pittsburgh 340
21 Richmond 300
22 St Louis 260
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The cost of transportation from each possible warehouse to each representative
has also been determined. Exhibit 7.5 presents the warehouse-to-representative transportation
costs.

Fortunately, there is no question of meeting the customer service requirements policy in the
new region, because any of the warehouses being considered could deliver to any of the eastern
representatives within 24 hours.
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Chapter 8

Nonlinear Programming

In Chapter 1, we introduced the optimization capability of Solver with a simple
revenue-maximization problem that illustrated the Generalized Reduced Gradient
(GRG) algorithm, which is Excel’s nonlinear solver. Then, in Chapters 2–7, we
focused on linear programming models, solving them with Excel’s linear solver. In
this chapter, we return to the nonlinear solver and examine the types of optimization
problems it can handle.

Taken literally, the term nonlinear programming refers to the formulation and sol-
ution of constrained optimization problems that are anything but linear. However, that
isn’t a wholly accurate assessment of the GRG algorithm’s capability. Two features are
important in this regard. First, in terms of finding solutions, linear programming
models are actually a subset of nonlinear programming models. That is, the GRG
algorithm can be used to solve linear as well as nonlinear programs. However, for
linear programming, we use the linear solver because it is numerically more depend-
able than the GRG algorithm and provides a more extensive sensitivity analysis. The
GRG algorithm provides an abbreviated sensitivity analysis, and it may also have
difficulty locating a feasible solution when one exists. Still, there is nothing wrong,
in principle, with using the GRG algorithm to solve a linear problem.

The second feature to keep in mind is that the GRG algorithm has limitations as a
nonlinear solver. In particular, it is mainly suited to problems in which the constraints
and objective function contain smooth functions. Informally, the definition of a
smooth function would be a function without gaps or kinks. A gap means that the
function is not continuous: if we were to place a pencil on a sketch of the function,
we would not be able to trace the function’s entire graph without lifting up the
pencil at some point. A gap occurs, for example, in a price schedule with a price
break, such as the first function shown on the graph in Figure 8.1. A kink in the func-
tion refers to a sharp corner, where the function comes to a point as it changes direc-
tion. A kink occurs, for example, in the relationship of output to demand, such as the
second function in Figure 8.1. The presence of a nonsmooth function tends to create
problems for the nonlinear solver. That said, the nonlinear solver can successfully be
applied to a large variety of optimization problems, and this chapter illustrates the
major categories.

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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The nonlinear programming problems we address contain decision variables, an
objective function, and usually some constraints. In this respect, they are structurally
similar to linear programs except that their objective functions and/or constraint func-
tions are not linear. We look first at problems that have no constraints, so that we can
focus on the nature of a nonlinear objective function and its implications for the use of
the nonlinear solver. We then look at problems with nonlinear objectives and linear
constraints, and we build on some of the coverage in previous chapters. Finally, we
look at the boundary of linear and nonlinear models, demonstrating how, in some
very special cases, we can transform a nonlinear model into a linear one, so that we
can exploit the advantages of the linear solver.

8.1. ONE-VARIABLE MODELS

By taking a brief look at models with one decision variable, we can begin to appreciate
the optimization task for nonlinear problems. Conceptually, we can think about find-
ing the maximum of a function y ¼ f (x) that we could draw on a graph. Figure 8.2
shows a graphical plot for a hypothetical nonlinear function. The function shown in

Figure 8.1. Examples of nonsmooth functions.
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the graph is a smooth function, that is, a continuous function without breaks or corners.
The nonlinear solver is well suited to this type of function. It is designed to search for
the maximum value of the function and the x-value that achieves it.

With one-variable models, it would be possible to locate the maximum value on a
spreadsheet by using Excel’s Data Table tool. However, even that approach may
require several repetitions, depending on the level of precision desired, and additional
interventions in the spreadsheet would be required for sensitivity analysis. The use of
the nonlinear solver automates the key manual steps. Nevertheless, our main reason for
investigating one-variable problems here is to illustrate how the nonlinear solver works
in a manageable optimization problem.

The algorithm used by Solver for nonlinear models is a steepest ascent method.
Starting from any point on the graph, the procedure looks for the direction in which
the function increases most rapidly and moves in that direction to a new point. This
process repeats from the new point, ultimately stopping at a point where the function
does not increase. From the graph in Figure 8.2, we can see that the stopping point may
depend on the starting point. If we start the search at point A, the search terminates at
point B. Likewise, if we start the search at G, the search terminates at F. Only if we start
the search between points C and E will the procedure terminate at the desired point, D.

This example illustrates a general feature of the nonlinear solver. The steepest
ascent method terminates at a local optimum, which is the best point within a prede-
fined neighborhood. However, there may be a global optimum located some distance
away. The global optimum is the best point anywhere, and that is really the solution we
seek. Unfortunately, there is no guarantee that the nonlinear solver will terminate at the
global optimum; all we can say is that it converges to a local optimum.

These features immediately describe a contrast between the nonlinear and linear
solver. The linear solver, applied to a linear program, always finds a global optimum
(assuming one exists) and does so irrespective of the values of the decision variables
initially placed in the spreadsheet. The nonlinear solver, applied to a general nonlinear

Figure 8.2. Hypothetical nonlinear objective function.
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program, always finds a local optimum (if one exists) but not necessarily a global opti-
mum. Moreover, its result may depend on the initial values of the decision variables.
An example will serve to illustrate the basic optimization properties.

8.1.1. An Inventory Example

A standard inventory problem involves the tradeoff of ordering costs and carrying
costs. This tradeoff represents a common concern in managing inventories, as in the
example of Crowley Foods.

EXAMPLE 8.1 Crowley Foods

At grocery distributor Crowley Foods, a particular stock item has a stable demand of 5000
cartons during the year. Each time the distributor places an order for a replenishment lot, a
cost of $35 is incurred for receiving, handling, and inspection. This fixed cost is incurred less
frequently as the order quantity increases. The distributor also ties up working capital in inven-
tory and figures its opportunity cost at 10 percent per year, assessed on the average level of
inventory. Each carton costs $30, so the carrying cost incurred annually is $3 per unit. The
annual carrying cost incurred rises as the order quantity increases. Crowley Foods wishes to
select an order quantity that minimizes the combined costs of ordering and inventory. B

In Example 8.1, the order quantity is the only decision variable. If we let x rep-
resent the order quantity, then the number of orders placed per year is 5000/x and
the fixed cost incurred annually is 35(5000/x) ¼ 175,000/x.

Because Crowley Foods can order when stock has fallen essentially to zero, its
inventory level fluctuates between 0 and x, averaging x/2. Therefore, the carrying
cost incurred annually is (0.10)(30)(x/2) ¼ 1.5x.

With demand known to be 5000 per year, the annual purchase cost of 30(5000) ¼
150,000 is constant and independent of the order quantity; therefore, the purchase cost
can be ignored when determining the best order quantity. Crowley’s problem is to find
the order quantity x that minimizes its annual cost of ordering and inventory, or

f (x) ¼ 175,000=xþ 1:5x

Figure 8.3 shows a spreadsheet containing the given parameters, as part of the
optimization model. The spreadsheet contains three modules: decision variables, par-
ameters, and objective function. Cell C4 contains the arbitrary value 100, as an initial
value for the decision variable. To find the best order quantity, we specify the problem
as follows.

Objective: C16 (minimize)
Variable: C4

The model contains no explicit constraints, although it’s convenient to add the
constraint x � 1 when using Solver. This modification is helpful because we could
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run into problems in calculating f (x) if we permit x ¼ 0. When we optimize, the con-
vergence message appears in the task pane on the Output tab

Solver has converged to the current
solution. All constraints are
satisfied.

The same message appears along the bottom of the task pane, highlighted in yellow.
The convergence result means that internally Solver has not encountered the compu-
tational evidence needed to identify the solution as a local optimum. In some cases,
this problem can be mitigated by choosing a better initial solution. Normally, when
we encounter this result, we simply re-run the optimization starting from the newly
obtained solution.

If we re-run Solver starting with the new solution, we obtain the optimality
message

Solver found a solution. All
constraints and optimality conditions
are satisfied.

The same message appears along the bottom of the task pane, highlighted in green.
This is the result we want from Solver, and depending on our starting solution, we
may obtain this result on the very first run. It confirms that the minimum total cost
is $1024.70, achieved by ordering in lots of 342.

The fact that the optimality conditions are satisfied indicates that Solver has found
a local optimum. As mentioned earlier, there is no guarantee that this result is also a
global optimum, at least without some additional information about the model. In
other words, Solver itself has no way of determining whether the solution is a
global optimum. So we might ask whether there is additional information we can
bring to bear on this issue. One way is to draw a graph of the objective function.
Figure 8.3 displays such a graph, which provides strong evidence that there is only

Figure 8.3. Spreadsheet model for Example 8.1.
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one local optimum in this problem and that we have found it. However, a graph will
not always provide conclusive evidence, and graphing is not a technique that general-
izes easily to problems containing several variables.

In this instance, at least, Crowley Foods can minimize its annual inventory-related
costs on this stock item by ordering 342 units at a time, although it wouldn’t be sur-
prising to find that the actual order size is rounded to 350 for convenience. The model
can be used to verify that costs are not very sensitive to small changes in the order
quantity and that, in fact, the annual cost for a quantity of 350 is virtually identical
to the optimal cost.

Another approach to finding a global optimum, rather than a local optimum, is to
try a variety of different starting points. In this example, we can start with several
different order quantities, re-run Solver, and we will come to the same result of 342
each time. This is not a rigorous proof, but it tends to build our confidence that we
have located a global optimum. In other problems, however, this approach could ident-
ify several local optima, leaving the search for a global optimum inconclusive. In other
words, the technique of restarting the procedure from a different initial solution can
reveal that several local optima exist, but it can never prove that there is only one
local optimum. The next example helps to illustrate the behavior of local optima.

8.1.2. A Quantity Discount Example

For a second example, we continue with the inventory example and explore the impli-
cations of a price discount on the purchase of the product being stocked.

EXAMPLE 8.2 A Purchase Discount for Crowley Foods

Instead of the purchase cost remaining constant at $30 per carton, the following price-break
schedule applies to the product that Crowley Foods has been analyzing.

Quantity purchased Unit cost

x � 100 $30.00
101 � x � 500 $29.50
501 � x $29.40

Having discovered this discount possibility, Crowley is now considering whether to alter its pur-
chase policy of ordering in replenishment lots of 342. B

With the possibility of a discount, we must include the annual purchase cost in the
objective function, because the total annual cost depends on the order quantity. The
spreadsheet in Figure 8.4 shows an extension of the first order quantity model that
includes the purchase cost component and the quantity discount structure as well.
The unit cost per carton, which can be $30.00, $29.50, or $29.40, gives rise to an
annual purchase cost that has three different forms. The formula in cell C17 contains
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an IF function, which chooses among the three unit costs according to whether the
purchase quantity in cell C4 qualifies for a price discount, and then the formula com-
putes the total purchase cost. In general, the IF function is nonsmooth, and a structure
we prefer to avoid when using the nonlinear solver. Nevertheless, we proceed here,
because this example illustrates the occurrence of a local optimum in a relatively
simple, one-variable model. We can easily check our results using alternative
methods.

To find the best order quantity, we specify the model as follows.

Objective: C18 (minimize)
Variable: C4

However, depending on the initial value, Solver converges to one of two solutions,
as shown below.

Initial x Final x Objective

x � 215 500 $148,100
216 � x � 499 342 $148,525
500 � x � 2304 500 $148,100
2305 � x � 2499 342 $148,525
x � 2500 500 $148,100

Evidently, there are two local optima, one at x ¼ 342 and the other (the global opti-
mum) at x ¼ 500. (Figure 8.4 plots the objective function for a range of order quan-
tities in the vicinity of these choices.) Starting values in the neighborhood of 342
converge to 342 as a local optimum. (Somewhat surprisingly, this is also the case
for starting values near 2400.) On the other hand, starting values at or somewhat
above 500 converge to the global optimum, as do relatively small initial values,

Figure 8.4. Spreadsheet model for Example 8.1.
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below 216. However, once we find one local optimum that is not the global optimum,
we can only wonder how many other local optima there might be. In this instance, the
graph in Figure 8.4 indicates that only two local optima exist.

The results involving local optima also raise another issue: Are there conditions
under which we can be sure that there is only one local optimum? In other words,
are there situations where we can be sure that any local optimum we find is also a
global optimum? The answer is that such conditions can be identified, and in many
practical cases, objective functions will have just one local optimum. We examine
this topic next.

8.2. LOCAL OPTIMA AND THE SEARCH
FOR AN OPTIMUM

From the earlier discussion, we know that the GRG algorithm may generate local
optima instead of global optima in nonlinear optimization problems. This possibility
raises at least two general questions.

1. Can we identify situations in which local optima exist that are not global
optima?

2. Are there situations in which the nonlinear solver guarantees that it has found a
global optimum?

Some theoretical results help answer these questions, but they do not take us very far.
To provide a glimpse of the relevant theory, we first define some terms. An

objective function is convex if a line connecting any two points on its graph lies on
or above the function itself. Similarly, a function is concave if a line connecting any
two points lies on or below the function. Informally, we can think of a convex function
as having a graph that is “bowl” shaped and a concave function as having one that is an
“inverted bowl.” These two concepts are relatively easy to see in two dimensions, as
shown in Figures 8.5 and 8.6, and they hold as well for multidimensional functions.
However, functions exist that are neither convex nor concave, such as the function
in Figure 8.2.

Figure 8.5. A convex function.
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A set of constraints delineates a convex feasible region if a line connecting any
two points in the region lies entirely within the region. Informally, this means that,
in a convex region, any blend (weighted average) of two feasible solutions is also feas-
ible. Figures 8.7 and 8.8 show a two-dimensional illustration of a convex region and a
nonconvex region, respectively, as shaded areas. A set of linear constraints gives rise
to a convex region. Nonlinear constraints may give rise to either convex or nonconvex
regions.

The GRG algorithm is guaranteed to find a global optimum when the objective
function is convex (when minimizing) or concave (when maximizing) if the con-
straints correspond to a convex region of feasible decisions. Although this property

Figure 8.6. A concave function.

Figure 8.7. A convex region.

Figure 8.8. A nonconvex region.
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begins to answer our question about local optima, it is not always an operational result.
Unfortunately, the mathematics of identifying convexity lie beyond the scope of this
book. For most practical purposes, we have a convex feasible region if we have no con-
straints at all or if we have a feasible set of linear constraints. In addition, we have a
convex or concave objective function if it is linear or if it is made up of quadratic
terms or terms involving such smooth functions as eax, log(ax), and the like, with coef-
ficients that are all positive or all negative.

In some problems, we cannot tell whether the requisite conditions are satisfied, so
we cannot be sure whether the solution generated by the GRG algorithm is a global
optimum. In such cases, we may have to tolerate some ambiguity about the optimal
solution. As the previous discussion has suggested, there are two ways we can try
to build some evidence that Solver has located the global optimum. First, we can
plot a graph of the objective function and see whether it provides a confirming picture.
However, this approach is essentially limited to one- or two-variable models. A second
response is to re-run Solver starting from several different initial points to see whether
the same optimal solution occurs. However, there is no theory to tell us how many such
runs to make, how to select the initial points advantageously, or how to guarantee that
a global optimum has been found.

In a nonlinear problem, if we run Solver only once, we may have to be lucky to
obtain the global optimum, unless we know something about the problem’s special
features. To help convince ourselves that Solver has found the global optimum, we
might try rerunning from different starting points to see whether the same solution
occurs. Even then, we can’t be too casual about selecting those starting points; in
the quantity discount example, starting points between 216 and 499 lead to the
same suboptimal result. In a complicated, multidimensional problem, we might
have to test many starting points to give us a reasonable chance of finding a global opti-
mum. However, it was just this type of effort that we were trying to avoid by using
Solver in the first place.

Solver contains a MultiStart option that automates the process of re-running with
different starting values of the decision variables. This option can be found on the
Engine tab of the task pane, in the Global Optimization section. (The default value
for this option is False.) When using this option, it is necessary to specify upper
and lower bounds for all decision variables. The nonnegativity requirement, assuming
it applies, can serve as a lower bound, but the user must supply an upper bound if none
is contained in the original formulation.

Thus, when we use Solver, we must consider whether the algorithm we use,
applied to the optimization problem we have posed, is a reliable algorithm. By that,
we mean the algorithm is guaranteed to find a global optimum whenever one exists.
The simplex method, applied to linear programs, is always reliable. The GRG algor-
ithm, applied to nonlinear programs, is reliable only in special circumstances.

Because the GRG algorithm is the default choice of a solver, it is tempting to use it
when solving linear programming problems as well as nonlinear programming pro-
blems. A problem containing a linear objective function and linear constraints quali-
fies as one of the problem types in which the nonlinear solver is reliable. However, two
possible shortcomings exist in solving linear problems. First, the GRG algorithm may
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not be able to locate a feasible solution if the initial values of the decision cells are
infeasible. Sometimes, it may be difficult to construct a solution that satisfies all con-
straints, just for the purposes of initiating the steepest ascent method used in the non-
linear solver. In some cases, the nonlinear solver will report that it is unable to find a
feasible solution, even when one exists. By contrast, the linear solver is always able to
locate a feasible solution when one exists. A second reason for preferring the linear
solver for linear problems relates to numerical aspects of the model. In some cases,
the nonlinear solver may be unable to find an optimal solution without requiring
the Automatic Scaling option, whereas the linear solver would not encounter such a
problem.

When it comes to problems with integer constraints on some of the variables,
Solver augments its basic solution algorithm with a branch-and-bound procedure,
as described in Chapter 6. The branch-and-bound method involves solving a series
of relaxed problems—that is, problems like the original but with integer constraints
removed. When the branch-and-bound procedure is applied to a linear model, in
which the simplex method is reliable, we can be sure that the search ultimately locates
an optimum. However, when the branch-and-bound procedure involves a series of
nonlinear models, we cannot be sure that the relaxed problems are solved to optimal-
ity. Therefore, the search may terminate with a suboptimal solution. For that reason,
we should avoid using Solver on nonlinear integer programming problems, although
the software permits us to use this combination.

8.3. TWO-VARIABLE MODELS

When we move from one decision variable to two, the analysis remains manageable.
To check Solver’s result, we can plot the outcomes of a two-dimensional grid search,
based on using Excel’s Data Table tool. We can also investigate the objective function
behavior one variable at a time. Although such investigations are not foolproof in two
dimensions, they are likely to be quite helpful. The examples that follow illustrate
some of Solver’s applications.

8.3.1. Curve Fitting

A common problem is to find a smooth function to fit observed data points. A more
sophisticated, statistically-oriented version of this problem is known as regression,
but here we take only the first step. Consider the Fitzpatrick Fuel Supply Company
as an example.

EXAMPLE 8.3 The Fitzpatrick Fuel Supply Company

The Fitzpatrick Fuel Supply Company, which services residential propane gas tanks, would like
to build a model that describes how gas consumption varies with outdoor temperature
conditions. Knowledge of such a function would help Fitzpatrick in estimating the short-term
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demand for propane. A sample of 12 observations was made at customers’ houses on different
days, and the following observations of degree-days and gas consumption were recorded.

Degree Gas
Day days consumption

1 10 51
2 11 63
3 13 89
4 15 123
5 19 146
6 22 157
7 24 141
8 25 169
9 25 172

10 28 163
11 30 178
12 32 176

(A degree day is one full day at a temperature 1 degree lower than the level at which heating is
needed—usually 688.) For each day in the table, the number of degree days represents an aver-
age over the day. As a first cut at the estimation problem, Fitzpatrick’s operations manager would
like to fit a linear model to the observed data. B

The proposed linear model takes the form y ¼ a þ bx, where y is the gas con-
sumption in cubic feet and x is the number of degree days. The problem is to find
the best values of a and b for the model. Standard practice in this type of problem
is to minimize the sum of squared deviations between the model and the observations.

The curve-fitting technique proceeds by calculating, for each of the observations,
the difference between the model value and the observed value. If the kth observation
is represented as (xk, yk), then the difference between the model and the kth observation
can be written as follows.

Difference ¼Model value� Observed value

dk(a, b) ¼ (aþ bxk)� yk

A measure of how good a fit the model achieves is the sum of squared differences
(between model value and observation value) or

f (a, b) ¼
X

k

[dk(a, b)]2

A small sum indicates that the fit is quite good, and our objective in this case is to mini-
mize the sum of squared deviations. In this formulation, the model parameters a and b
are the decision variables, and the objective is to minimize f (a, b). Figure 8.8 displays a
spreadsheet for the curve-fitting problem. The first module contains the decision vari-
ables (the model parameters a and b) in cells E3 and E4, and the second module con-
tains a single-cell objective in E5. The third module contains the data along with
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calculations of the predicted values and their differences from observed values. The
sum of squared differences is calculated from these differences using the SUMSQ
function.

We specify the problem as follows.

Objective: E5 (minimize)
Variable: E3:E4

The solution, as displayed in Figure 8.9, is the pair (18.5, 5.5), for which the sum of
squared deviations is approximately 3053. This means that the best predictive model

BOX 8.1 Excel Mini-Lesson: The SUMSQ Function

The SUMSQ function in Excel calculates the sum of squared values from a list of numbers.
The numbers can be supplied as arguments to the function, or the argument(s) can be cell
references. The form of the function is the following

SUMSQ(Number1, Number2, . . . ) or SUMSQ(Array)

In cell E5 of Figure 8.9, the function =SUMSQ(E9:E20) squares each of the 12 elements
in the Difference column and then adds the squares. If we were to enter the values 10 and 6
in cells E3 and E4, respectively, the total would be 3208. Because the need to compute a
sum of squares is encountered frequently, Excel provides this function to streamline the
calculation.

Figure 8.9. Spreadsheet for Example 8.3.
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for the 10 observations is the line y ¼ 18.5 þ 5.5x. Using this simple function,
Fitzpatrick Fuel Supply can make reasonable predictions of propane consumption
as the daily temperature varies. With this capability, along with short-term forecasts
of daily temperatures, Fitzpatrick can predict future demand and thereby position its
inventories appropriately.

The curve-fitting model can easily be extended to functions other than the linear
model (or to functions with more than two parameters). For example, we might guess
that a better model for consumption would be the power model y ¼ axb. If we had
reason to believe that this model contained better predictive power, we could revise
the spreadsheet to test it. We simply have to take the linear model out of cells
D9 :D20 and substitute the power model. Re-running Solver with this change in the
model yields a minimum sum of squared deviations equal to approximately 2743,
which is a lower figure than can be achieved by any linear model. The best fit in
the power family is the function y ¼ 11.5x0.81. Although there may well be structural
reasons to prefer a model with diminishing returns (because the fuel is less efficient
when used intermittently, at low x-values), the optimization criterion also leads us
to the power model as a preferable choice in terms of minimizing the sum of squared
deviations.

The curve-fitting model with a linear predictor and a sum-of-squares criterion
has a convex objective function. This structure tells us that the optimization is
straightforward, and we don’t have to worry about local optima. For the sum-of-
squares criterion, the local optimum found by Solver will always be the global opti-
mum. A more challenging problem would arise if some other criterion were used. For
example, had the criterion been to minimize the sum of absolute deviations, the
optimization problem would have been more difficult. (We investigate this variation
in Chapter 9.)

8.3.2. Two-dimensional Location

A common problem is to find a location for a facility that serves many customer sites.
In Chapter 7, we encountered the discrete version of the facility location problem,
which involves a specific set of possible locations. However, a first cut at a location
problem might be helpful before we know the details of possible locations. In such
cases we can approach the problem from a continuous perspective. Most often, the
continuous location problem arises in two dimensions, as in the case of Merrill
Sporting Goods.

EXAMPLE 8.4 Merrill Sporting Goods

Merrill Sporting Goods has decided to build a centrally located warehouse as part of its distri-
bution system. The company manufactures several types of sports equipment, stocks them at the
factory warehouse, and delivers to a variety of retail sites. Having outgrown its current ware-
house and wanting to take advantage of new warehousing equipment, the firm has decided to
build at a fresh location. To define a central location, their ten retail sites are first mapped on
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a two-dimensional grid, so that the coordinates (xk, yk) can be associated with each site. These
values are as follows.

Site (k) xk yk

1 9 29
2 5 50
3 26 68
4 39 79
5 41 54
6 38 59
7 63 6
8 52 58
9 81 76

10 95 93

A good location is one that is “close” to all sites. To make this concept operational, Merrill’s
distribution manager suggests that the objective should be to minimize the sum of the distances
between the warehouse and the various sites. Using this measure as a criterion, the distribution
manager wishes to find the optimal location for the warehouse. B

To begin the analysis, we represent the location of the warehouse by the coordi-
nates (x, y). The straight-line distance in two dimensions between the warehouse and
the kth site (also known as the Euclidean distance) is given by

Dk(x, y) ¼ (x� xk)2 þ ( y� yk)2� �1=2

Based on this definition, we can express Merrill’s objective function as follows

f (x, y) ¼
X10

k¼1

Dk(x, y)

The problem is to find the decision variables (x, y) that minimize the total distance
function f (x, y). The problem has no explicit constraints. Figure 8.10 shows a spread-
sheet for the problem, where the coordinates of the warehouse location appear in cells
E4 and E5, and the total distance objective appears in cell E8. The detailed data appear
in the last module.

We specify the problem as follows

Objective: E8 (minimize)
Variable: E4:E5

The solution, as displayed in Figure 8.10, is the location (39.59, 58.43), for which the
objective function reaches a minimum of approximately 301.72. The conclusion for
Merrill Sporting Goods is that the map location corresponding to approximately
(40, 58) represents the central location they seek.
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We might wonder whether this figure represents a global optimum. As discussed
earlier, we can re-run Solver from a variety of starting solutions. Starting with a variety
of different solutions, we find that Solver always leads us to the same optimal solution
of about (40, 58). Plots of the objective function as we vary x or y separately suggest a
similar story. Thus, we have at least some informal evidence that our solution is a
global optimum. (Because this is a two-variable optimization model, we could use
the Data Table tool to confirm this result.)

8.4. NONLINEAR MODELS WITH CONSTRAINTS

In terms of building spreadsheet models, it is no more difficult to add a constraint in a
nonlinear program than it is to add a constraint in a linear program. When using Solver,
the steps are identical. Perhaps the only important difference lies in what we might
expect as a result.

The key difference between linear and nonlinear models can be illustrated with
graphs of a one-dimensional problem. Figure 8.11 shows both the linear and nonlinear
cases. In the first graph, the objective is linear, in the form f (x) ¼ cx. The decision vari-
able x must satisfy the constraints x � a and x � b. It is easy to see that the optimal
value of the objective function must occur when the decision variable lies at one of
the constraint boundaries. In a maximization problem, the optimum would be x ¼
b; in a minimization problem, the optimum would be x ¼ a. (The conclusions
would be similar if the linear objective had a negative slope rather than a positive one.)

Figure 8.10. Spreadsheet for Example 8.4.

312 Chapter 8 Nonlinear Programming



In the second graph, the objective is nonlinear, in the form f (x) ¼ (x 2 s)2, and
the same two constraints apply. Assuming that the parameter s lies between a and
b, the minimum value of f (x) occurs at x ¼ s, and neither of the constraints is binding.
On the other hand, the maximum value of f (x) does lie at one of the constraint
boundaries.

This graphical example shows that we should always expect at least one constraint
to be binding for a linear objective, but that may not be so for a nonlinear objective. In
the nonlinear case, the mathematical behavior of the objective function may lead to an
optimal decision for which no constraints are binding.

8.4.1. A Pricing Example

When a problem contains both price and quantity decisions, it is likely that a nonlinear
programming model will result. The nonlinearity derives from the fact that profit on a
given product is equal to (Price 2 Cost) � Volume, and Price depends on Volume.
Consider the situation at Nells Furniture Company.

EXAMPLE 8.5 Nells Furniture Company

Nells Furniture Company (NFC) sells two main products, sofas and dining tables. Based on the
last few years of experience in the sales region, the marketing department has estimated demand
curves relating the price and demand volume for each product. For sofas, the relationship is

p1 ¼ 220� 0:4x1

where p1 and x1 are the price and volume, respectively. For tables, the price–volume relation-
ship is

p2 ¼ 180� 0:2x2

The variable costs are $60 per unit for the sofas and $45 per unit for the tables. Each item is
assembled on site and then inspected carefully. The inspection usually involves some rework
and touch-up. There are 800 hours available in the assembly department and 500 in the inspec-
tion department. Sofas require 2 hours assembly time and 2 hours inspection time. Tables
require 3 hours assembly time and 1 hour inspection time. The management at NFC wants to
maximize profit under these conditions. B

Figure 8.11. Linear and nonlinear objective functions.
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Taking the volumes x1 and x2 as decision variables, we first write the objective func-
tion in terms of these variables by substituting for p1 and p2

Profit ¼ ( p1 � 60)x1 þ ( p2 � 45)x2

¼ (160� 0:4x1)x1 þ (135� 0:2x2)x2

The constraints in the problem are linear constraints

2x1 þ 3x2 � 800 (assembly)

2x1 þ x2 � 500 (inspection)

The problem becomes one of maximizing the nonlinear profit function, subject to two
linear constraints on production resources.

Figure 8.12 shows a spreadsheet model for the problem. The three modules in the
spreadsheet correspond to decision variables, objective function, and constraints. In
the objective function module, we list the unit price, unit cost, and unit profit explicitly.
The unit price of sofas in cell C6 is given by the formula relating sofa price and sofa
volume, and similarly for the unit price of tables in cell D6. This layout allows us to
express the total profit using a SUMPRODUCT formula, although it is not a linear
function. Finally, the constraints are linear, so their structure follows the form we
have seen in earlier chapters for linear programs.

We specify the problem as follows

Objective: E8 (maximize)
Variables: C4:D4
Constraints: E11:E12 � G11:G12

Solver returns the optimal decisions as approximately 144 sofas and 170 tables. The
corresponding prices are $162.27 and $145.91, and the optimal profit is about
$31,960. Although we formulated the model using volumes as decision variables, it

Figure 8.12. Spreadsheet for Example 8.5.

314 Chapter 8 Nonlinear Programming



would probably be the case in this type of a setting that the focus would be on
prices. As the model indicates, optimal prices are approximately $162 and $146 for
sofas and tables, respectively. By solving this optimization problem, NFC has an
idea how to set prices in the face of a price-sensitive customer market.

8.4.2. Sensitivity Analysis for Nonlinear Programs

In Chapter 4, we described two software-based procedures for sensitivity analysis,
Parameter Sensitivity and the Sensitivity Report. For nonlinear programs, the use of
the Parameter Sensitivity tool is essentially the same as it is for linear programs.
However, the Sensitivity Report is a little different, and we describe it here.

Returning to the example of the previous section, suppose we optimize the NFC
example and then create the Sensitivity Report. Solver provides the report shown in
Figure 8.13. As in the case of linear programs, there are three parts to the report, relat-
ing to objective function, decision variables, and constraints. For decision variables,
the report lists the optimal value for each variable (which, of course, repeats infor-
mation on the worksheet itself) along with the reduced gradient. This value, like
the reduced cost in linear programs, is zero if the variable does not lie at its bound.

For constraints, the report lists the optimal value for each left-hand side
(again, duplicating information in the spreadsheet) along with the Lagrange multi-
plier. This value is essentially a shadow price. When the constraint is not binding, the
shadow price is zero; otherwise, the Lagrange multiplier provides us with the instan-
taneous rate of change in the objective function as the constraint constant changes.

Figure 8.13. Sensitivity report for Example 8.5.
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For example, suppose we vary the number of assembly hours in the NFC model
and reoptimize. The table below, obtained from the Parameter Sensitivity tool, sum-
marizes the results for values above and below the given value of 800 hours.

Assembly hours Optimal profit Rate of change

750 30,801 –
760 31,040 23.91
770 31,276 23.55
780 31,508 23.18
790 31,736 22.82
800 31,960 22.45
810 32,181 22.09
820 32,398 21.73

Thus, when the number of assembly hours changes from 770 to 780, the optimal
profit improves by $231.82 (¼ 31,507.50 – 31,275.68), or $23.18 per additional
assembly hour over this interval. From the table, we can see that the value of an
additional hour of assembly time varies depending on the number of assembly
hours in the model, dropping from nearly $24 to under $22 over the range shown.
The rate of change in the table is calculated from changes in the optimal profit on
a grid of size 10. If we reduced the grid to size five or size one, we would see that
rate change more gradually, row to row. The entry for 800 assembly hours would
change from $22.45 on the size 10 grid to $22.36 on the size five grid, and to
$22.29 on the size one grid. We can imagine continuing this process to ever finer
grids. As we do so, the incremental value of assembly hours declines, and the rate
of change at 800 gets ever closer to a limiting value of $22.27. This limiting value
corresponds to the Lagrange multiplier.

The Sensitivity Report provides the shadow price for linear programs and the
Lagrange multiplier for nonlinear programs. Their values are zero when the constraint
is not binding; and when the constraint is binding, their values give the incremental
value of the scarce resource. In the typical linear program, however, this incremental
value stays constant for some amount of increase or decrease in the constraint con-
stant. In the typical nonlinear program, as illustrated here, this incremental value is
always changing with the constraint constant. The Lagrange multiplier represents only
the instantaneous rate of change. For that reason, no ranging information, such as the
allowable increase or decrease reported in the linear model, would be appropriate.

8.4.3. The Portfolio Optimization Model

A portfolio is a collection of assets. In a stock portfolio, the investor chooses the
stocks, and the dollar value of each, to hold in the portfolio at the start of an investment
period. Over this period, the values of the stocks may change. At the end of the period,
performance can be measured by the total value of the portfolio. For a given size (or

316 Chapter 8 Nonlinear Programming



dollar value) of the portfolio, the key decision is how to allocate the portfolio among
its constituent stocks.

A stock portfolio has two important projected measures: return and risk. Return is
the percentage growth in the value of the portfolio. Risk is the variability associated
with the returns on the stocks in the portfolio. The information on which stocks are
evaluated is a series of historical returns, typically compiled on a monthly basis.
This history provides an empirical distribution of a stock’s return performance. For
stock k in the portfolio, this return distribution can be summarized by a mean (rk)
and a standard deviation (sk).

EXAMPLE 8.6 Counseling Ms Downey

Suppose we are providing investment advice to Ms Downey, who has a nest egg to invest and
some very clear ideas about her preferred stocks. In fact, she has identified stocks in five different
industries that she believes would constitute a good portfolio. The performance of the five stocks
in two recent years is summarized by the following data.

Stock Mean St. dev.

National Computer 0.0209 0.0981
National Chemical 0.0121 0.0603
National Power 0.0069 0.0364
National Auto 0.0226 0.0830
National
Electronics

0.0134 0.0499

Ms Downey does not, however, know how to allocate her investment among these five
stocks. National Computer Company and National Auto Company stocks have achieved the
best average returns in the two-year period, but they also have relatively high volatility, as
measured by their standard deviations. National Power Company is the least volatile, but it
also has the lowest average return. Ms Downey wishes to navigate between these different
extremes. Our task is to organize this quantitative information so that we can help her make
the allocation decision. B

Figure 8.14 shows a worksheet containing the monthly returns for Ms Downey’s five
stocks over the last two years. The data can be found in columns I through N. The mean
returns are calculated using the AVERAGE function in cells B4:F4, and the standard
deviations are calculated using the STDEV function in cells B5:F5.

Next, the task is to combine the individual stock behaviors into a summary for the
portfolio as a whole—that is, a calculation of the mean and variance. For the portfolio
mean, we use a weighted average of individual stock returns. Thus, if we allocate a
proportion pk of our portfolio to stock k, then the return on the portfolio is the weighted
average

R ¼
X

k

pkrk
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This calculation lends itself to the SUMPRODUCT formula and appears in the
worksheet in cell C26. The proportions themselves, highlighted as decision variables,
appear in cells B15:F15, with their sum in cell G15.

For the portfolio variance, we use a standard statistical formula for the variance of
a sum. For this purpose, we must know the covariance skj between every pair of stocks
(k, j). The covariance values are calculated from the historical data with Excel’s
COVAR function. These figures appear in the spreadsheet in cells B8:F12.

Figure 8.14. Spreadsheet model for Example 8.6.

BOX 8.2 Excel Mini-Lesson: The COVAR Function

The COVAR function in Excel calculates the covariance between two equal-sized sets of
numbers representing observations of two variables. The covariance measures the extent to
which one variable tends to rise or fall with increases and decreases in the other variable. If
the two variables rise and fall in unison, their covariance is large and positive. If the two
variables move in opposite directions, their covariance is negative. If the two variables
move independently, their covariance is close to zero. The basic form of the function is

COVAR(Array1, Array2)

† Array1 references the observations of the first variable.

† Array2 references the observations of the second variable.

The arrays must be of the same size.
In cell C11 of Figure 8.14, the function =COVAR($M4:$M27,$K4:$K27) finds the

covariance between the returns of National Chemical Company and those of National
Auto Company. In this case, the function generates the value –0.0006. The fact that it is
a small number in absolute value indicates that the two sets of returns are nearly indepen-
dent; the fact that it is negative indicates that there is a slight tendency for National Auto’s
returns to go up when National Chemical’s returns go down, and vice versa.
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The formula for the portfolio variance is

V ¼
X

k

X

j

pkskjpj

This formula sometimes appears in statistics books in a different but equivalent form.
From this form, however, it is not difficult to make the calculation in Excel. The value
of pkskjpj is computed as the (k, j)th element of the array in cells B18:F22. (For this
purpose, it is convenient to replicate the proportions from row 15 in cells G8:G12.)
Then the elements of this array are summed in cell C24. As a result, the risk measure
V appears in cell C24, and the return measure R appears in C26.

The portfolio optimization problem is to choose the investment proportions to
minimize risk subject to a floor (lower bound) on the return. That is, we want to mini-
mize V subject to a minimum value of R, with the p-values as the decision variables. A
value for the lower bound appears in cell F26. We specify the model as follows.

Objective: C24 (minimize)
Variables: B15:F15
Constraints: C26 � F26

G15 ¼ 1

For a return floor of 1.5 percent, Solver returns the solution shown in Figure 8.14.
All five stocks appear in the optimal portfolio, with allocations ranging from 30 per-
cent of the portfolio in National Chemical to 13 percent of the portfolio in National
Computer.

For this model, the spreadsheet layout is a little different from the others we have
examined, mainly due to the close relationship between the historical data and the
elements of the analysis. The spreadsheet, as constructed, could easily be adapted
to the optimization of any five-stock portfolio. All that is needed is the set of returns
data, to be placed in the data section of the spreadsheet. For a data collection period of
longer than 24 periods, the formulas for average, standard deviation, and covariance
would have to be adjusted. The Calculations section separates the decision variables
from the objective function, but the logic of the computations flows from
Proportions to Calculations to Risk and Return.

In principle, two modeling approaches are possible in portfolio optimization.

Minimize portfolio risk, subject to a floor on the return

or

Maximize portfolio return, subject to a ceiling on the level of risk

The former structure is usually adopted, because it involves a convex objective and
linear constraints, a case for which the GRG algorithm is reliable.

Beyond a single optimization of the portfolio model, investors are usually inter-
ested in the tradeoff between risk and return. If we minimize risk subject to a floor on
the return, we can repeat the optimization for several values of the floor. This process
traces out points along the so-called efficient frontier, which plots the best risk achiev-
able for any desired level of return. A complementary approach is available if we maxi-
mize return subject to a ceiling on risk. Results from the Optimization Sensitivity tool

8.4. Nonlinear Models with Constraints 319



for these two approaches, along with summary plots, are shown in Figure 8.15. Both
plots describe the same risk-return trade-off; they just happen to take slightly different
forms. By exploring Ms. Downey’s preferences as they play out in these graphs, we
can make a more persuasive recommendation on how her investment funds should
be allocated.

8.5. LINEARIZATIONS

As discussed earlier, the linear solver is a reliable procedure when we apply it to solve
a linear programming problem, but the GRG algorithm is not reliable in general for a
nonlinear programming problem. For that reason, and especially when our model con-
tains integer variables, we always prefer to solve a linear model rather than a nonlinear
model. Some problems that are formulated naturally with nonlinear functions can be
reformulated as linear programs. Two examples of these transformations, or lineariza-
tions, are presented in this section.

Our purpose here is to show how to convert certain nonlinear forms to linear
forms permitting us to construct a linear model before invoking Solver. It’s important
to know that RSP contains an option that can automate these linearizations, but with
very little transparency. As a first step, it is helpful to turn off these automated pro-
cedures, and to do so, we set the Nonsmooth Model Transformation option to
Never on the Platform tab of the task pane. The default option is Automatic, but we
will assume the user has selected Never instead.

8.5.1. Linearizing the Maximum

Suppose our objective function is the maximum of several expressions involving
decision variables, such as maxk{

P
jakjxj}. Presumably, we would encounter this

Figure 8.15. The efficient frontier in Example 8.6.
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kind of objective in a minimization problem. The natural way to represent this criterion
in a spreadsheet model would be to use Excel’s MAX function in the objective, or in
cells referenced in the objective. If we were to invoke the linear solver, we may
encounter an error message stating that our model does not satisfy its linearity require-
ments (because the MAX function is not linear). If we invoke the nonlinear solver, we
may get a solution, but we cannot be sure that it is a global optimum.

To improve our results, we can convert to a linear form by introducing a variable y
that plays the role of the maximum. Then we add definitional constraints of the form

y �
X

j

akjxj (8:1)

With the variable y as the objective function to be minimized, we have a linear model,
so we can use the linear solver. As an example, consider the situation at the Armstrong
Advertising Agency.

EXAMPLE 8.7 Armstrong Advertising Agency

The Armstrong Advertising Agency has several publishing projects that are ready for pro-
duction. Four departments are capable of implementing these projects, and the agency wants
to distribute the work among departments as evenly as possible.

Each of the projects will take a certain number of days. The following table shows the work-
load in each project, as estimated by the sales manager.

Project 1 2 3 4 5 6 7 8

Days 10 21 32 53 65 77 89 100

Distributing work “as evenly as possible” is not a precise description of an objective function; it
tells us only what an ideal solution would look like. In this problem, with 447 days’ worth of
work, an ideal solution would allocate 111.75 days to each department. However, because indi-
vidual projects cannot be split, we know that an ideal solution is impossible. The substantive
question for determining an objective function is how to measure a nonideal solution. At
Armstrong, the notion of distributing work evenly derives from a goal of fairness. Therefore,
the consensus is that the best solution is one that minimizes the largest amount of work assigned
to any of the departments. B

A natural algebraic formulation of the problem is straightforward. Let aj represent the
time for project j, and define the following binary decision variables.

xkj ¼ 1, if project j is assigned to department k

¼ 0, otherwise

With this notation, the optimization model is as follows

Minimize z ¼ maxk

X

j

ajxkj

( )

subject to
X

k

xkj ¼ 1 for j ¼ 1, 2, . . . , 8
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A spreadsheet model for assigning the projects to the four departments is shown in
Figure 8.16. The times required for the projects are entered in cells B5:I5. Binary vari-
ables assigning each project to a department are displayed in the array B7:I10. The row
below this array contains the sum of the decision variables in each column—the sum
over all departments. The column to the right of this array shows the total number of
days assigned to each department, and the maximum of these values, computed in cell
J4 with the formula ¼MAX(J7:J10), serves as the objective function.

We specify the problem as follows

Objective: J4 (minimize)
Variables: B7:I10
Constraints: B11:I11 ¼ 1

B7:I10 ¼ binary

Normally, the linear solver does not run on this model because of the presence of the
MAX function, which is technically a nonsmooth function. In the output window of
the task pane, Solver’s error message appears when an attempt is made to use the linear
solver.

The linearity conditions required by
this Solver engine are not satisfied.

In contrast, the nonlinear solver does run, but it may not find an optimal solution
because the model contains binary variables as well as nonlinearity. However, a lin-
earization is possible. We can introduce a new variable y to represent the largest of
the departmental workloads, as in (8.1). This variable is displayed in cell J4 and treated
like the other decision variable cells, as shown in Figure 8.17. But this cell is special,
because it is also the value of the objective function. In addition to the constraints
already formulated, we need to add constraints requiring y to be at least as large as
the total number of days assigned to each department.

Figure 8.16. Spreadsheet model for Example 8.7.

322 Chapter 8 Nonlinear Programming



We specify the problem as follows

Objective: J4 (minimize)
Variables: B7:I10

J4
Constraints: B11:I11 ¼ 1

B7:I10 ¼ binary
J7:J10 � J4

The last set of constraints is unconventional because the right-hand side appears to be
just one cell, while the left-hand side references an array of four cells. However, Solver
interprets the meaning correctly. Alternatively, the constraint could be expressed in a
more standard fashion.

The linear solver returns the solution shown in Figure 8.17 quickly and reliably.
The workloads at Armstrong will be 109, 110, 110, and 118 days, so that the entire set
of projects will take 118 days to complete. By using the linearized model, Armstrong
can be sure that the work is distributed in the fairest way, at least when fairness is
defined to mean minimizing the maximum workload.

As this example demonstrates, the transformation of the MAX function to a linear
form is not difficult, but Solver offers the capability of making the transformation auto-
matically. This transformation would be initiated if we set the Nonsmooth Model
Transformation option to Automatic (or to Always) on the Platform tab in the task
pane. This option is convenient because we can set up the model in an intuitive
fashion, even if it does not satisfy the linearity requirement, and Solver can compen-
sate by performing the necessary transformation. However, the transformation actually
implemented by Solver is not visible to the user, so it’s not possible to know precisely
how the model is transformed. For example, in the case of Example 8.7, the original
model contains 32 variables and 8 constraints. Our transformation, shown in
Figure 8.17, uses 33 variables and 12 constraints. Solver’s automatic transformation

Figure 8.17. Optimal solution for Example 8.7.
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uses 38 variables and 21 constraints, as reported in the Current Problem section of
the Engine tab. (Solver’s summary counts the objective function as a separate con-
straint.) Thus, the details of the automatic transformation may be a bit different than
the manual transformation, but the details of the automatic transformation are not
made available to the user.

8.5.2. Linearizing the Absolute Value

Suppose our objective function contains terms involving absolute value expressions,
such as j

P
jakjxjj. The natural way to build a spreadsheet model would be to use

Excel’s ABS function in the objective function, or in cells referenced by the objective
function. If we were to invoke the linear solver, we may see an error message,
either stating that our model does not satisfy the linearity requirements (because the
ABS function is nonsmooth) or stating that the model is unbounded. If we invoke
the nonlinear solver, we may get a solution, but we cannot be sure that it is a global
optimum.

To tackle this problem, we can define a pair of auxiliary variables, uk and vk, to
account for the difference between

P
jakj xj and zero. Then we include constraints of

the following form

X

j

akjxj þ uk � vk ¼ 0 (8:2)

In this linear formulation, two cases arise.

If
P

jakjxj � 0, then vk ¼ 0 and uk measures the negative difference (if any).

If
P

jakjxj � 0, then uk ¼ 0 and vk measures the positive difference (if any).

In either case, the value of (uk þ vk) measures the absolute value of the difference
between

P
jakjxj and zero. In the objective function, we can then use (uk þ vk) in

place of the original absolute value expression.
As an example, we return to the situation at the Armstrong Advertising Agency in

Example 8.7 and revisit the question of measuring a nonideal distribution of work. We
might be skeptical of using a maximum value in the objective function because in the
final solution, only one of the departments (Department 3) contributes directly to the
objective. Departments 1, 2, and 4 have loads far less than 118, and they don’t seem to
affect the objective.

We can construct a more comprehensive objective. For convenience, let

Lk ¼
X

j

akjxj (8:3)

In words, Lk represents the workload assigned to Department k. Next, consider the
department workloads and focus on their pairwise differences: (L1 2 L2), (L1 2

L3), (L1 2 L4), (L2 2 L3), (L2 2 L4), and (L3 2 L4). Take the absolute value of
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these differences and calculate their sum. That total serves as the objective. With this
notation, we can state the optimization problem algebraically as follows.

Minimize z ¼
X

i,j

jLi � Ljj

subject to
X

k

xkj ¼ 1 for j ¼ 1, 2, . . . , 8

Lk �
X

j

akjxj ¼ 0 for k ¼ 1, . . . , 4

A spreadsheet model for assigning the projects to the four departments is shown
in Figure 8.18. The difference between this worksheet and the one shown in
Figure 8.16 lies only in the objective function. The decision variables in rows 7–10
play the same role as in the previous model. Below the decision variables, in
column B, we list the six department pairs, and in column C we record for each
pair the difference in their workloads. The absolute values of these differences
appear in column E, and the total of these absolute differences serves as the objective
function in cell J14 with the formula ¼SUM(E14:E19).

We specify the problem as follows.

Objective: J14 (minimize)
Variable: B7:I10
Constraints: B11:I11 ¼ 1

B7:I10 ¼ binary

Figure 8.18. Spreadsheet for Example 8.7 with absolute value objective.
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Normally, the linear solver does not run on this model because of the presence of the
ABS function, which is nonsmooth. In the output window of the task pane, Solver’s
error message appears when an attempt is made to use the linear solver.

The linearity conditions required by
this Solver engine are not satisfied.

If we invoke the nonlinear solver, the GRG algorithm appears to run, but we can’t tell
whether its solution is a global optimum. In fact, if we use the solution in Figure 8.18
as the starting solution, the nonlinear solver generates the convergence message,
but the solution remains unchanged.

The linearized model requires pairs of auxiliary variables, uk and vk, correspond-
ing to each absolute value calculation. Those variables are defined by a constraint in
the form of equation (8.2).

Minimize z ¼
X

k

(uk � vk)

subject to
X

k

xkj ¼ 1 for j ¼ 1, 2, . . . , 8

X

j

akjxj þ uk � vk ¼ 0 for k ¼ 1, . . . , 4

This is a linear program containing six pairs of auxiliary variables as well as the binary
variables.

A worksheet for the linearized problem is shown in Figure 8.19. In the Objective
module, the auxiliary variables appear in cells E14:F19. The objective function
appears in cell J14 with the formula ¼SUM(E14:F19).

Figure 8.19. Spreadsheet for Example 8.7 with absolute value objective.
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We specify the problem as follows.

Objective: J14 (minimize)
Variable: B7:I10

E14:F19
Constraints: B11:I11 ¼ 1

G14:G19 ¼ 0
B7:I10 ¼ binary

The linear solver produces a solution, which is shown in Figure 8.19, that achieves an
optimal value of 27. Although the objective is quite different than the minimax value
used earlier, the assignment of departments to projects is similar, and the maximum
workload remains minimal at 118. By linearizing the model, Armstrong can be sure
that it has found the optimal solution to its revised formulation.

Solver offers the capability of transforming the use of the ABS function automati-
cally. This transformation would be initiated if we set the Nonsmooth Model
Transformation option to Automatic (or to Always) on the Platform tab in the task
pane. This option is convenient because we can set up the model in an intuitive
fashion, even if it does not satisfy the linearity requirement, and Solver can compen-
sate by performing the necessary transformation. However, the transformation actually
implemented by Solver is not visible to the user, so it’s not possible to know precisely
how the model is transformed. For example, in the case of Example 8.7, the original
model contains 32 variables and 8 constraints. Our transformation, shown in
Figure 8.19, uses 44 variables and 14 constraints. Solver’s automatic transformation
uses 44 variables (38 of which are integer variables) and 44 constraints (not including
the objective function), as reported in the Current Problem section of the Engine tab.
Thus, the details of the automatic transformation may be a bit different than the manual
transformation, but the details of the automatic transformation are not made available
to the user.

SUMMARY

The default choice for a solution algorithm in Solver is the nonlinear solver, also known as the
GRG Nonlinear Engine. The nonlinear solver uses a steepest ascent strategy to search for an
optimal set of decision variables, and it can be invoked for any nonlinear or linear programming
problem. For linear programming problems, however, the linear solver is preferred because it is
numerically stable and produces a comprehensive sensitivity report. For nonlinear problems that
have smooth objective functions, the GRG algorithm is the best choice. Table 8.1 summarizes
the features of the two solution algorithms.

Although it is capable of solving both linear and nonlinear problems, the nonlinear solver
does have its limitations. In general, the GRG algorithm guarantees only that it will find a local
optimum. This solution may or may not be a global optimum. If the objective function is con-
cave or convex, and if the constraints form a convex set, then we can be sure that the nonlinear
solver produces a global optimum. Otherwise, we can try alternative starting points as a way of
marshalling evidence about optimality, but there is no foolproof scheme for identifying the

8.5. Linearizations 327



global optimum in general. Solver’s MultiStart option is often a powerful feature in trying to
solve problems with several local optima, but it does not provide any guarantees, either.

Another limitation concerns integer-valued variables. The presence of integer constraints
in an otherwise nonlinear model generally leaves us in a situation where the nonlinear solver
may fail to find a global optimum, even to a relaxed problem that is encountered during
Solver’s implementation of branch and bound. This feature renders the GRG algorithm unreli-
able (in the sense of producing a guaranteed global optimum), and the implication is that we
should avoid trying to solve integer nonlinear programming problems with Solver.
Fortunately, in some practical cases, we can transform the most natural formulation into a
linear model. With the transformation, an integer-valued problem can be solved reliably with
the linear solver augmented by the branch and bound procedure. For models that contain
Excel’s MAX, ABS, or IF functions, Solver’s Nonsmooth Model Transformation option can
often provide the linear equivalent of a nonsmooth formulation, although the details of the
model it builds remain opaque.

Finally, because the nonlinear solver is applicable to such a wide variety of optimization
problems (and therefore must accommodate exponents, products, and special functions) we
know of no standard layout that conveniently captures the necessary calculations in the context
of spreadsheets. This feature stands in contrast to the use of the linear solver, where one standard
layout could, in principle, always be used. (Nevertheless, as we have seen in Chapters 3–6, there
are sometimes good reasons for using a few non-standard variations.) The most useful guideline,
as with all spreadsheet models, still seems to be to modularize the spreadsheet and thereby sep-
arate objective function, decision variables, and constraints.

EXERCISES

8.1. Merrill Sporting Goods (Revisited) Revisit Example 8.4, in which the criterion gives
equal weight to each of the retail sites. But in practice, there will be different levels of traf-
fic between the warehouse and the various sites. One way to incorporate this consideration

Table 8.1. Comparison of the Linear and Nonlinear Algorithms

Linear solver Nonlinear solver

Suitable for linear models Suitable for nonlinear models;
can also solve most linear models.

Finds a global optimum each time Finds a local optimum each time.
No guarantee of global optimum,

except in special circumstances.
Ignores initial decision variables Uses initial decision variables in search;

result may depend on starting values.
Finds a feasible solution if one exists May not be able to find a feasible

solution when one exists.
Always leads to an optimum, unless

problem is infeasible or unbounded
May generate “convergence” message;

a re-run may be necessary.
Comprehensive sensitivity information

from the Sensitivity Report
Sensitivity Report does not include

allowable ranges.
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is to estimate the number of trips between the warehouse and each retail site and then
weight the distances by the trip volumes. Thus, the original data set has been augmented
with volume data (vk), as listed in the table below.

Site (k) xk yk vk

1 9 29 12
2 5 50 15
3 26 68 20
4 39 79 12
5 41 54 8
6 38 59 16
7 63 6 18
8 52 58 20
9 81 76 12

10 95 93 24

Now we can use as a criterion the weighted sum of distances between the warehouse and
the retail sites.

(a) What location is optimal for the weighted version of the criterion?

(b) How much of an improvement is achieved by the solution in (a) over the optimal
location for the unweighted version (39.59, 58.43)?

8.2. Curve Fitting for Revenues A large food chain owns a number of pharmacies that
operate in a variety of settings. Some are situated in small towns and are open for only
eight hours a day, five days per week. Others are located in shopping malls and are
open for longer hours. The analysts on the corporate staff would like to develop a
model to show how a store’s revenues depend on the number of hours that it is open.
They have collected the following information from a sample of stores.

Hours of
operation

Average
revenue

40 $5958
44 6662
48 6004
48 6011
60 7250
70 8632
72 6964
90 11,097

100 9107
168 11,498

(a) Use a linear function to represent the relationship between revenue and operating
hours and find the values of the parameters that provide the best fit to the given
data. What revenue does your model predict for 120 hours?
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(b) Suggest a two-parameter nonlinear model for the same relationship and find the par-
ameters that provide the best fit. What revenue does your model predict for 120
hours? Which of the models in (a) and (b) do you prefer and why?

8.3. Curve Fitting for Costs Newton Manufacturing Company has reached a stable volume
in the last couple of years and is interested in developing a planning model for its pro-
duction levels, based on aggregate units of output. One element will be a cost model
that describes the relationship of unit cost to production volume. Newton’s capacity is
thought to be around 2500 aggregate units at current equipment and labor force levels,
and it is well known that unit costs tend to rise when output volumes are significantly
above or below this figure. For volumes above this figure, costs rise due to overtime pre-
miums and to high congestion levels in the plant. For volumes below the nominal figure,
costs rise due to inefficiencies in production. Analysts at Newton have therefore decided
that some type of quadratic function would be a suitable model for unit costs, and they
have proposed the form ax2

þ bx þ c, where x represents the aggregate number of
output units, and the parameters a, b, and c remain to be determined. For this purpose,
the model will be fit as closely as possible to the last 12 months of observed data, as repro-
duced in the table below.

Month
Aggregate

output
Unit
cost

1 2350 $53.35
2 2200 54.60
3 2450 49.62
4 2600 53.62
5 2550 49.69
6 2400 51.18
7 2300 53.25
8 2650 51.91
9 2700 54.23

10 2750 50.06
11 2500 49.08
12 2250 54.46

(a) What values of the three parameters provide the best fit to the data, as measured by the
minimum sum of squared differences?

(b) What does the model in (a) predict as the unit cost for an output of 2500?

8.4. Economic Order Quantity (EOQ) A distributor of small appliances wishes to calcu-
late the optimal order quantity for replenishing its stock of a particular washing machine.
Demand for the $200 machine is stable throughout the year and averages about 1000 units
annually. Each order involves the cost of transportation, receiving and inspection, account-
ing for expenses of $500 per order. Holding costs are figured at 20 percent per year.

(a) What order quantity minimizes the annual replenishment cost?

(b) How does the optimal cost break down into holding and carrying components?

8.5. EOQ for Multiple Products In another location, the distributor of the previous pro-
blem stocks four different items in common warehouse space. Each item is described

330 Chapter 8 Nonlinear Programming



by an annual demand rate, a fixed cost per order, a holding cost per year, a unit purchase
cost and a space requirement. The data in the following table describe the four products.

Item 1 2 3 4

Demand 5000 10,000 30,000 300
Fixed cost 400 700 100 250
Holding cost 50 25 8 100
Purchase cost 500 250 80 1000
Space (sq. ft) 12 25 5 10

(a) Considering each product separately, as if it were independent from the others, what
are the respective economic order quantities? What is the total annual cost of order-
ing, holding, and purchasing across the four products at these order quantities?

(b) What is the minimum total annual cost for the four products if the average space taken
up must be no more than 12,000 square feet?

(c) What is the minimum total annual cost for the four products if the average space taken
up must be no more than 12,000 square feet and the number of orders per year must be
no more than 65?

(d) In part (b), with a square-foot limit on storage space, what is the economic value of
more space?

(e) In part (c), what is the economic value of more space?

8.6. Pricing with Dependent Demands Covington Motors is a car dealership that special-
izes in the sales of sport utility vehicles and station wagons. Due to its reputation for qual-
ity and service, Covington has a strong position in the regional market, but demand is
somewhat sensitive to price. After examining the new models, Covington’s marketing
consultant has come up with the following demand curves.

Truck demand ¼ 400� 0:014 (truck price)

Wagon demand ¼ 425� 0:018 (wagon price)

The dealership’s unit costs are $17,000 for SUVs and $14,000 for wagons. Each SUV
requires 2 hours of prep labor, and each wagon requires 3 hours of prep labor. The current
staff can supply 320 hours of labor.

(a) Determine the profit-maximizing prices for SUVs and Wagons. (Round off any frac-
tional demands.)

(b) What demand levels will result from the prices in (a)?

(c) What is the marginal value of dealer prep labor?

8.7. Pricing with Interdependent Demands Covington Motors sells sport utility vehicles
and station wagons in a price-sensitive market. Its marketing consultant has rethought the
simple demand curves first proposed (in the previous exercise) and now wants to recog-
nize the interaction of the two markets. This gives rise to a revised pair of demand curves
for SUVs and wagons, as shown below.

SUV demand ¼ 300� 0:014 (SUV price)þ 0:003 (wagon price)

Wagon demand ¼ 325� 0:018 (wagon price)þ 0:005 (SUV price)
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The dealership’s unit costs are $17,000 and $14,000 per unit, respectively. Each
SUV requires 2 hours of prep labor, and each Wagon requires 3 hours of prep labor.
The current staff can supply 320 hours of labor. Covington Motors wants to maximize
its profits from the SUVs and Wagons that it acquires for its stock.

(a) Determine the profit-maximizing prices for SUVs and Wagons. (Ignore the fact that
these prices may induce fractional demands.)

(b) What sales levels will result from the prices in (a)?

(c) What is the marginal value of dealer prep labor?

8.8. Allocating an Advertising Budget A regional beer distributor has $125,000 to spend
on advertising in four markets, where each market responds differently to advertising.
Based on observations of the market’s response to several advertising initiatives, the dis-
tributor has estimated the sales response by fitting a curve of the form R ¼ axb, where R
represents sales revenue and x represents advertising dollars, both measured in thousands.
The estimated demand curves are shown in the table below.

Market Sales revenue

Domestic 66x0.55

Premium 77x0.44

Light 88x0.33

Microbrew 99x0.22

(a) How should the funds be allocated among the four markets so that the revenue to the
company as a whole will be maximized?

(b) How much would it be worth (in terms of incremental revenue) to raise the amount
available for advertising by $1000?

8.9. Supply Chain Design Muslin Office Furniture manufactures a popular line of filing
cabinets and has a very strong competitive position in its market. The company sells its
product to a number of wholesale distributors who, in turn, sell to retail customers. In
this environment, the company faces a demand curve of the following form

Q1 ¼ 20� 0:6P1

where P1 denotes its selling price and Q1 denotes the volume (in thousands) sold at that
price. Muslin also experiences increasing marginal costs of the form 0.8Q1. (This means
that its total cost is 0.8(Q1)2/2.) Increasing marginal costs occur because of quality losses
and congestion on the shop floor as volume rises.

One of Muslin’s distributors is a subsidiary known as New England Supply. They
represent Muslin’s exclusive distributor in the northeast, and the parent company
allows them to operate as an independent entity, focused on distribution. They buy
filing cabinets from Muslin and sell them to retail customers in the northeast. In that
market, New England Supply faces its own demand curve as follows

Q2 ¼ 10� 0:2P2

where P2 denotes the retail selling price and Q2 denotes the volume (in thousands) sold in
the northeast at that price. New England Supply incurs its own operating costs, in addition
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to the cost of purchasing the product from Muslin, so that its marginal cost function takes
the form P1 þ 0.4Q2. This means that its total cost is P1Q2 þ 0.4(Q2)2/2.

(a) Suppose that Muslin Office Furniture and New England Supply each analyze their
own pricing strategies separately. That is, Muslin finds its profit-maximizing price.
Then New England Supply, whose cost is influenced by Muslin’s price, maximizes
its own profits. What is each firm’s optimal price and how much profit is earned
between the two companies?

(b) Suppose instead that the two firms make coordinated decisions. In other words, they
choose a pair of prices, one wholesale and one retail, aimed at maximizing the total
profit between the two firms. What is each firm’s optimal price in this coordinated
environment? How much profit is earned between the two companies?

8.10. Estimating Beta In finance it is important to be able to predict the return on a stock
from the return on the market, that is, on a market index such as the S&P 500 index. It
is often hypothesized that a particular prediction equation exists

y ¼ aþ bx

where y is the return on a stock during a time period, x is the return on the market index
during the same time period, and a and b are constants that must be estimated. The value
of b is of particular interest, because it indicates how closely the returns on a particular
stock tend to follow the returns on the market as a whole.

If our knowledge of the parameters a and b were perfect, then we could predict indi-
vidual stock returns accurately from the behavior of the market. Typically, such knowl-
edge does not exist, and our values of a and b are imperfect. In other words, when we
use them, we encounter errors in our predictions. The best we can do is to choose the esti-
mates a and b in order to make prediction errors close to zero.

Find data on returns for Coca-Cola stock on a monthly basis for the period January 2,
2001 to December 1, 2006, and returns for the S&P 500 index for the same 72 months. Fit
the linear prediction equation to this set of data. Use as a criterion the minimum sum of
squared differences between the actual stock returns and their predicted values. For the
historical data, estimate the parameters of the prediction equation for Coca-Cola stock.

(a) What is the estimated value of b, for Coca-Cola stock?

(b) Repeat the estimation process for Microsoft stock. What do you expect to find in
terms of the relationship between the b for Microsoft and the b for Coke?

8.11. Portfolio Model The information on which stocks are evaluated is a series of historical
returns, typically compiled on a monthly basis. This history provides an empirical distri-
bution of a stock’s return performance. For stock k in the portfolio, the table below sum-
marizes the monthly returns for five stocks over a two-year period in the late 1990’s.

Stock Mean

National Computer (NCO) 0.0371
National Chemical (NCH) 0.0145
National Power (NPW) 0.0118
National Auto (NAU) 0.0185
National Electronics (NEL) 0.0217

In addition, the covariance values for the five stocks are displayed in the following table.
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NCO NCH NPW NAU NEL

NCO 0.0110 20.0004 0.0000 0.0019 0.0013
NCH 20.0004 0.0032 20.0002 0.0002 0.0003
NPW 0.0000 20.0002 0.0015 0.0007 20.0002
NAU 0.0019 0.0002 0.0007 0.0051 0.0008
NEL 0.0013 0.0003 20.0002 0.0008 0.0044

(a) Determine the portfolio allocation that minimizes risk (i.e., portfolio variance) for a
portfolio consisting of these five stocks, subject to maintaining an average return of at
least two percent. What is the minimum variance?

(b) Determine the portfolio allocation that maximizes return for a portfolio consisting of
these five stocks, subject to maintaining a variance of at most 0.002. What is the opti-
mal return?

(c) Suppose an investor prefers an objective function that combines return and risk, as in
the following

Objective ¼ Return� 2(Risk)

(d) What is the optimal allocation for this measure of performance?

8.12. Production Smoothing A supplier of raw material has made plans to provide monthly
deliveries to a customer. The customer’s requirements are shown in the following table.

Month 1 2 3 4 5 6 7 8
Units 100 200 300 400 100 100 500 300

The raw material can be processed and prepared for delivery in any volume because part-
time labor can be used, and the labor pool is quite large. However, changes in month-to-
month production volumes can be costly. When production levels increase, costs must be
incurred in acquiring and training new workers. When production levels decrease, costs
are incurred due to layoff policies.

Based on historical data, the cost estimate for increasing production from one month
to the next is $1.50 per unit increase in capacity. In the other direction, reducing pro-
duction from one month to the next incurs a cost of $1.00 per unit reduction in capacity.
The other relevant cost is the cost of inventory: each unit held in stock incurs a cost of
$2.00 per month held.

Entering month 1, the starting inventory is 80 units, and the production level has
been steady at 100 units. To make sure the plans can be extended into the future, inventory
is required to be at least 50 units at the end of the eighth month, and the planned pro-
duction level for month 9 is 200.

What is a minimum-cost production plan for the supplier?

8.13. Political Redistricting Based on the new census information, it is time to redraw the
boundaries of the political districts in the state of Idazona. Each district will have one
representative in the next Congress, and Idazona has been allocated four representatives
based on its share of the national population. The state is made up of nine counties, with
populations (in thousands) shown in the table. (See the state map in Figure 8.20.)

The main requirement in the formation of districts is that they produce equal popu-
lations, or as close to equal as possible. Furthermore, the districts must be composed of
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adjacent counties without splitting any county between two or more districts. Officials in
Idazona interpret the requirement to mean that if a district is created from two counties,
then those two counties must share a border. Furthermore, if a district is created from
three counties, then at least one of the counties must be adjacent to the other two. No dis-
trict is permitted to have exactly one county or more than three counties.

Mathematically, officials are seeking a districting plan for which the maximum
deviation between a district population and the average district population will be as
small as possible.

What assignment of counties to districts will satisfy the desired conditions?

Case: Delhi Foods

Manisha Patel recently completed her first week of work as a summer intern at Delhi Foods.
Earlier this morning, Manisha’s boss, the Director of Marketing, asked her to come up with a
recommendation on the level of marketing expenses (advertising and promotion expenditures)
for a line of frozen Indian dinners as it enters its seventh year in the marketplace. Exhibit 8.1,
which Manisha received from her boss, contains an accounting summary of essential product
costs and revenues in the first six years, during which there has been some trial-and-error exper-
imentation with marketing policies. For year seven, the table shows projections for the coming

County 1 2 3 4 5 6 7 8 9

Population 25 23 29 20 22 37 34 21 34

1
2

3
4

5

6

7

8

9

Figure 8.20. State map of ldazona.
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year based on a continuation of last year’s policy. This includes a new high of $38,000 in mar-
keting expense, but Manisha’s boss intimated that this might be excessive.

Late last week, Manisha read an internal marketing study that had been completed at Delhi
Foods. The study concluded that it is possible to represent the influence of marketing expenses
on demand by means of the equation

D ¼ aMb

where D and M represent demand and marketing expenses, respectively, and where a is called
the scale factor and b the elasticity of marketing expenses. Manisha knows from courses she has
taken that this model belongs to a family of demand equations commonly used in market analy-
sis. To determine values for the parameters a and b that apply to this product, she will have to
match this model to the observations as closely as possible.

Manisha ponders the information in the table. Costs for the coming year appear to be
known; therefore, variable costs have already been estimated. Overhead and fixed production
costs do not appear to be variable costs, so they don’t enter into a calculation of gross
margin. Instead, the gross margin is based on revenue, materials costs, and other variable
costs. Using the projected figures for the coming year, Manisha expects that she will be able
to compute the gross margin per unit. From there, Manisha believes she can represent profit
for the line of dinners by using the gross margin per unit along with an estimate of demand
to predict this year’s gross margin. Then she can subtract marketing expenses and fixed costs
to arrive at a profit figure. She sees that marketing expenses show up in her profit calculation,
but they also affect her demand estimate. If she can sort out all the relationships in a spreadsheet
model, Manisha believes that she can find the optimal level to spend on marketing.

EXHIBIT 8.1 Summary of Product Costs and Revenues

Year 1 2 3 4 5 6 7

Demand (cartons) 3200 3400 3500 3600 3800 4400 4700
Revenue $(000) 62,000 63,000 66,000 75,000 86,000 98,000 105,000

Production
Materials 27,000 29,000 30,000 35,000 39,000 33,000 35,000
Other variable 1700 2200 2800 3500 2400 10,800 11,600
Fixed 4500 4700 4900 5000 5300 5600 5900

Marketing
Advertising 10,300 11,700 15,000 16,200 17,800 22,000 24,000
Promotion 9000 6000 4000 11,000 12,000 13,000 14,000

Overhead 6000 6000 5000 5000 5000 5000 6000
Operating margin 3500 3400 4300 (700) 4500 8600 8500
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Chapter 9

Heuristic Solutions with the
Evolutionary Solver

In previous chapters, we have encountered three powerful optimization procedures—
the linear solver, the branch-and-bound procedure, and the nonlinear solver. For linear
models, we use the linear solver. This algorithm is reliable: It always finds a global
optimum when the model does not contain an unbounded objective function or con-
flicting constraints. For linear programming models with integer constraints, we also
rely on the linear solver. The integer constraints are added in the problem formulation,
informing the linear solver to use its branch-and-bound procedure in the search for an
optimal solution. The branch-and-bound procedure relies on solving a series of linear
programs, so if Solver does not run out of time, this is a reliable procedure, too.
However, when the model does not satisfy the conditions of linearity, the linear
solver is of no use.

For nonlinear programming problems, we use the nonlinear solver. This algor-
ithm is not as reliable as the linear solver because it may stop its hill climbing at a
local optimum and it is unable to determine whether it has found a global optimum
or stopped short of one. We can at least improve our chances of finding a global opti-
mum by re-running the nonlinear solver from a variety of different starting points, a
process we can automate with the MultiStart option. However, when the problem is
not composed of smooth functions, the nonlinear solver often fails to help.

The fourth solution procedure in RSP is the evolutionary solver, which is the sub-
ject of this chapter. This procedure is particularly useful for tackling optimization
models containing nonsmooth functions. As suggested in Chapter 8, a nonsmooth
function is one that exhibits gaps or kinks. The presence of a nonsmooth function
undermines the performance of the linear and nonlinear solvers. However, the avail-
ability of a solution procedure suitable for nonsmooth functions allows us to build
models with more flexibility than under the restrictions of the linear and nonlinear
solvers. In particular, we can take advantage of several Excel functions in the model.
We can include the IF function, which allows us to represent some simple logical
choices. We can include several other familiar mathematical functions, such as
ABS, MIN, MAX, CEILING, FLOOR, ROUND, and INT. (Although it is sometimes
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possible to avoid using these functions directly, doing so may require the use of binary
variables or auxiliary variables in cumbersome or unusual ways.) We can also include
spreadsheet-oriented functions such as CHOOSE, COUNTIF, INDEX, and
LOOKUP, which may provide convenience in spreadsheet calculations even though
they are seldom used in other circumstances. Thus, another way of interpreting non-
smooth is any computation that uses one of these dozen functions or one of the
other specialized functions in Excel.

The modeling flexibility comes at a price. Because the evolutionary solver makes
virtually no assumptions about the nature of the objective function, it has a limited
ability to identify an optimal solution. Essentially, it conducts a search, compares the
solutions encountered as it proceeds with the search, and stops when it senses that it is
making very little progress at finding improvements. The solution it generates may not
even be a local optimum, such as the solution the hill-climbing procedure delivers, yet
in many kinds of problems, the evolutionary solver delivers a good solution, if not an
optimal one. This type of procedure is called a heuristic procedure, meaning that it is a
systematic procedure for seeking good solutions, but it cannot guarantee optimality.

9.1. FEATURES OF THE EVOLUTIONARY SOLVER

A few features of the evolutionary solver are helpful to know. First, it is important
to realize that the procedure contains some randomized steps. As a consequence, we
may get different solutions when we run the evolutionary solver twice on exactly
the same model.

The evolutionary solver works with a population of solutions. At intermediate
stages of the solution procedure, it keeps track of several solutions rather than main-
taining just the one, best solution found so far. This population of solutions develops,
or evolves, in steps that mimic naturally occurring evolutionary processes. From the
population of solutions that it builds and maintains, the procedure can generate new
solutions, following the principle that an offspring solution should combine traits
from each of two parent solutions. In addition, there are occasional mutations,
which are offspring solutions with some random characteristics that do not come
from their parents. Over the course of the procedure, the population is governed by
a fitness criterion (based on the objective function) that removes the poorer solutions
and keeps the better ones. This process of selection drives the population toward better
levels of fitness (better values of the objective function). If there is evidence that the
population is no longer improving, or if one of the user-designated stopping conditions
is met, then the procedure stops. When it stops, Solver displays the best member of the
final population as the solution.

The inner workings of the evolutionary solver do not concern us at this stage.
However, in the next section, we provide an example that will help explain concep-
tually how the procedure works. The main point is that the evolutionary solver is
not handicapped by the presence of nonsmooth functions, as would be the case for
the linear and nonlinear solvers. It is also helpful to set some user-controlled options
when running the evolutionary solver. However, in the end, the evolutionary solver
cannot guarantee that it has found a global optimum, so some judgment is
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required—even more than with the nonlinear solver—when applying it to a particular
optimization problem.

In this chapter, we examine a series of examples that contain nonsmooth func-
tions, to illustrate how the evolutionary solver works. In some cases, we revisit pro-
blems that we tackled with other solution procedures in earlier chapters, mainly to
provide a contrast in optimization approaches. The variety of examples should provide
a working knowledge of the evolutionary solver, but, more than the other solvers we
have covered, this one requires practice and experience in order to use it effectively.

9.2. AN ILLUSTRATIVE EXAMPLE: NONLINEAR
REGRESSION

As our first example, we look at a curve-fitting problem in which the relationship
between two variables is nonlinear and in which the criterion is the sum of absolute
deviations. As discussed in Chapter 8, the most appropriate tool for curve-fitting pro-
blems is the nonlinear solver when the criterion is the sum of squared deviations. But
when the criterion is the sum of absolute deviations, several local optima may exist,
and the nonlinear solver may not find the best fit. The evolutionary solver is often
well suited to such problems.

Our purpose here is to describe, in an approximate way, how the evolutionary
solver works. This is not meant to be a precise description of the algorithm, but rather
a suggestive description of the evolutionary approach and the elements it contains. For
a specific example, we revisit the data from Fitzpatrick Fuel Supply (Example 8.3),
where we wanted to predict gas consumption on the basis of degree days.

Data from Example 8.3

A sample of 12 observations was made at customers’ houses on different days and the following
observations of degree days and gas consumption were recorded.

Degree Gas
Day days consumption

1 10 51
2 11 63
3 13 89
4 15 123
5 19 146
6 22 157
7 24 141
8 25 169
9 25 172
10 28 163
11 30 178
12 32 176
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As a first cut at the estimation problem, Fitzpatrick’s operations manager would like to fit a
linear model to the observed data.

Fitzpatrick’s operations manager believes that the power curve, y ¼ axb is a good
model. As a criterion, suppose that we want to minimize the sum of absolute devi-
ations (instead of squared deviations) between model and observations. This is a
less common criterion than the sum-of-squares measure that was used in Chapter 8,
but it is just as plausible for optimization purposes. Whereas the sum-of-squares
measure penalizes large deviations more severely than small ones, that is not the
case for the absolute-deviation measure.

Figure 9.1 displays a worksheet for this problem. The given data, consisting of 12
observations, can be found in the first three columns. The parameters a and b, which
serve as the decision variables, are located in cells E3 and E4. Specifying these two
parameters allows us to generate the values found in the column labeled Predicted
in column D, and the differences between model and observation are calculated in
column E. The absolute value of this difference appears in the next column, under
the heading Deviation. The sum of these absolute deviations, which is the objective
function to be minimized, appears in cell F5.

Knowing a little about the range of observations, we can make an educated guess
that the best value of a lies between 0 and 50, while the best value of b lies between
0 and 1. These are coarse limits, but they are sufficient to get us started. We generate an

Figure 9.1. Spreadsheet model for Example 8.3.
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initial set of pairs (a, b) by sampling randomly from these two ranges. Let’s suppose
this process generates the values shown in Table 9.1. In each case, the fitness number is
the objective function that corresponds to the values of a and b, and this value can be
calculated directly by using the worksheet. Here, we have constructed a population of
size 6. The best fitness is 440, and the average fitness is about 1706.

Next, we create new members of the population by the crossover method. In par-
ticular, we take the first two solutions and swap their a values. That way, the a value of
the first solution is paired with the b value of the second solution, and vice versa. In
other words, the two new solutions are (30.8, 0.55) and (19.7, 0.19). We can think of
these two solutions as being “offspring” of the original two solutions, with values of a
and b (interpreted as genes) that are inherited from their “parents.”

Suppose that the next new member of the population is created by the mutation
method. For the third solution, we keep the second gene (b) and randomly generate
the first gene (a), obtaining (20.0, 0.82)

Next, we’ll perform the crossover step on solutions 4 and 5, and then generate
another mutation from the sixth solution by keeping the first gene and randomly
generating the second. The six new members are shown in Table 9.2.

We can think of this list as newcomers to the population in one generation or
cycle. We’ll combine these members with the existing members and apply the fitness
criterion. This means that we’ll select a second generation of size 6, keeping just the
six best fitness values. The list becomes Table 9.3.

The best fitness in the new population has dropped from 440 to 322, and the aver-
age fitness has dropped from 1706 to 684.

Table 9.1. Initial population

a b Fitness

30.8 0.19 975
19.7 0.55 440
47.2 0.82 5230
30.0 0.59 519
43.8 0.66 2257
7.6 0.72 817

Table 9.2. First generation of offspring

a b Fitness

30.8 0.55 322
19.7 0.19 1210
20.0 0.82 1278
30.0 0.66 1033
43.8 0.59 1506
7.6 0.45 1273
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To create the third generation, we follow a similar procedure. We use the first two
solutions as parents to generate two offspring by the crossover operation. We use the
third solution to generate a mutation by randomly replacing the a value. Then we
repeat the process, applying the crossover operation to the fourth and fifth solutions,
and generating another mutation by randomly replacing the b value in the sixth sol-
ution. The six new members of the populations are shown in Table 9.4.

Combining this list with the previous one, we use the fitness criterion to remove
the least-fit members of the population, thus selecting the six best solutions as the third
generation (Table 9.5).

Now, the best solution in the population has improved to 217, and the average has
dropped to about 417. Another generation leaves the best solution unchanged but the
average drops to about 352.

Table 9.3. Population updated for fitness

a b Fitness

30.8 0.19 975
30.0 0.59 519
30.8 0.55 322
19.7 0.55 440
7.6 0.72 817
30.0 0.66 1033

Table 9.4. Second generation of offspring

a b Fitness

30.8 0.59 576
30.0 0.19 992
17.8 0.55 533
19.7 0.72 474
7.6 0.55 1147
30.0 0.54 217

Table 9.5. Second updated population

a b Fitness

30.0 0.54 217
30.8 0.55 322
19.7 0.55 440
19.7 0.72 474
30.0 0.59 519
17.8 0.55 533
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As these first few iterations suggest, the crossover and mutation procedures, along
with the fitness criterion, tend to generate populations with improving fitness values.
Clearly, a generation of solutions always has a best value and an average value that are
no worse than those of the previous generation. As we continue the process, which
Solver can do at great speed, we tend to find additional improvements.

The evolutionary solver does not follow the precise details of the generation-
building process we have outlined here, although it does rely on the crossover and
mutation procedures. The details of the actual implementation are not important in
order to understand how to implement the evolutionary solver, but here are some
relevant observations.

† For the purposes of implementing the crossover operation, the specific form of
a gene depends on the model and is determined within the evolutionary solver.

† The frequency with which mutations appear is an option set by the user. The
genetic form of a mutation, however, is determined within the evolutionary
solver.

† The procedure contains some randomness, so two successive runs from the
same starting point can produce different solutions.

† There can be no guarantees of optimality; the procedure may stop short of find-
ing an optimum.

To understand how the procedure stops, let’s look at the various options available
when we implement the evolutionary solver on a particular model.

In the task pane, we select the Standard Evolutionary Engine from the drop-
down menu on the Engine tab. Some elements that appear in the task pane are tailored
to the evolutionary solver, whereas others are common to the linear solver and the
nonlinear solver as well. For example, the Max Time parameter limits the amount
of time Solver uses trying to find a good solution before stopping. Normally, we
use this option as a kind of last resort. It should be set long enough that other options
have an opportunity to take effect, and it should reflect the amount of time we are will-
ing to allow the procedure to run without intervening. For large and complicated pro-
blems, this could mean a long wait, but we often choose a short time limit so that we
can get feedback quickly. When debugging a model, or just trying to get a feel for per-
formance on a given model, we might set this option to 20 or 30 seconds.

The user can also set the Population Size parameter. The purpose here is to make
sure that the population is sufficiently diverse. We used a population of size six in our
curve-fitting example, but that would be small for the automated implementation used
by Solver. In the course of solving a particular problem, we might start with a value as
small as 25 and later try a larger value for greater diversity. The evolutionary solver
will stop (with a convergence message) when 99 percent or more of the population
has fitness values whose relative differences are less than the Convergence parameter
shown in the task pane. A population size no more than 200 is required, but 50 might
often be adequate for even very difficult problems.

The Mutation Rate parameter affects the level of randomness in generating new
members of the population. A low rate would create few mutations, whereas a high rate
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offers greater diversity. The default value is 7.5 percent. We might raise this value if
we find evidence that the evolutionary solver stalls due to lack of diversity. As in our
example, the population may gravitate toward a set of similar solutions. When that
type of population convergence begins to take place, we may be located near a
global optimum, and our chances of locating that optimum become high. Raising
the mutation rate in such a case is unlikely to produce much improvement. On the
other hand, when convergence occurs at some distance away from a global optimum,
the process is analogous to finding a local optimum with the nonlinear solver. In that
case, we’d want to increase the diversity in the population, and it would be desirable to
raise the mutation rate. Normally, we do not know whether we are close to a global
optimum, but the effect of raising the mutation rate may provide a clue.

Another option is the Require Bounds option, asking whether to require upper and
lower bounds on the decision variables. This option should set to True, meaning that
the model must contain at least simple bounds entered as constraints. One of the
bounds may be dictated by a nonnegativity requirement, which is most conveniently
implemented by setting the Assume Non-Negative option to True. The evolutionary
solver tends to work more efficiently when the decision variables are bounded.

Finally, in the Limit section of the task pane, we encounter additional parameters.
The first two options in this section are the Max Subproblems parameter and the Max
Feasible Solutions parameter, both of which can limit the amount of effort Solver
devotes to a problem before stopping. However, these parameters can be left blank
as long as the Max Time parameter is set.

The next pair of options in the Limits section work together. They specify that the
search should stop if an improvement of at least the Tolerance has not been found in
the last Max Time without Improvement. It’s usually convenient to keep the Tolerance
at 0 percent but to vary the time without improvement according to previous outcomes.

The list in Box 9.1 describes particular settings that would be appropriate in the
initial stages of using the evolutionary solver. Some of the values are Solver default
values, while others are entered by the user, in some cases overriding the default
values. In addition, the Nonsmooth Model Transformation option, which appears
on the Platform tab of the task pane, should be set to Never. (Otherwise, Solver
may add some variables and constraints to the model that undermine the effectiveness
of the evolutionary solver.)

Returning to our example of nonlinear regression, suppose we set the initial
values of the decision variables to a ¼ 30.0 and b ¼ 0.50 and set the Assume

BOX 9.1 Initial Values for Parameters in the Evolutionary Solver

Max time: 30 sec Population Size: 25
Convergence: 0.0001 Mutation rate: 7.5%
Tolerance: 0 Max time w/o improvement: 15 sec
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Non-negative option to True (so that we have lower bounds on both decision vari-
ables). We specify the problem as follows.

Objective: F5 (minimize)
Variables: E3:E4
Constraints: E3 � 50

E4 � 1

For the sake of comparison, we might initially run the nonlinear solver. It produces a
solution with a total absolute deviation of 173.41. We turn now to the evolutionary
solver.

Due to randomness, we may not find that any two runs of the evolutionary solver
match exactly, but in this case, the results are similar. Suppose we initialize the model
with the decision variables shown in cells E3 and E4 of Figure 9.1. Two runs stop with
an objective function value of 160.10 and the following message in the Output
window.

Solver cannot improve the current solution.
All constraints are satisfied.

This “improvement” message means that no improvements were encountered in the
last 15 seconds of searching. This stopping condition occurred within the 30-
second Max Time limit.

The third run reaches the 30-second Max Time limit and produces a window with
the message: The maximum time limit was reached; continue anyway? At this stage,
the user can choose whether to continue or stop. When we press the Stop button, the
run terminates. The solution happens to again be 160.10 and the following message
appears in the Output window.

Stop chosen when the maximum time limit was reached.

From these results, it is difficult to determine how close we might be to an optimal
solution. Because the time-limit parameters limited the search, we might re-run the
evolutionary solver with a Max Time parameter of 60 seconds and a Max Time with-
out Improvement parameter of 30 seconds. If we find no improvements, we might try a
larger population size or a larger mutation rate, but in this case no improvements occur.
Although we have no guarantee, the evidence suggests that further searching will not
turn up an objective function value lower than 160.10. Figure 9.2 shows the best
solution found during the last run of the evolutionary solver.

Our example of nonlinear regression served two purposes. First, it allowed us to
use a manual method to describe the main workings of the evolutionary solver—cross-
overs, mutations, and selection by a fitness criterion. Second, it illustrated a straight-
forward optimization problem in which the nonlinear solver may not work as well as
the evolutionary solver. This is partly due to the existence of many local optima in the
example, but it’s also true that evolutionary methods have proven particularly effective
on complex regression problems. In the examples that follow, we focus more on the
model than on the refinements needed in the options to produce a good solution.
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9.3. THE MACHINE-SEQUENCING PROBLEM
REVISITED

In the machine-sequencing problem, a set of jobs is waiting to be processed. The
machine can work on only one job at a time, so the jobs must be processed in
a sequence. The problem is to find the best sequence for a given objective
function. In Chapter 7, we saw how to build an integer programming model for this
problem. That model requires a number of disjunctive constraints to accommodate
the conditions of feasibility. An alternative approach is available if we use the evol-
utionary solver.

We revisit the Miles Manufacturing Company (Example 7.4), in which we have
six jobs waiting to be scheduled. Each job will be either on time or late, depending on
the sequence chosen. If a job is late, the amount of time by which it misses its due date
is called its tardiness. Tardiness is zero when a job completes prior to its due date. The
objective is to minimize the total tardiness in the schedule.

Data from Example 7.4

This morning’s workload consists of six jobs, as described in the following table.

Figure 9.2. Best solution found for Example 8.3.
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Job number 1 2 3 4 5 6

Processing time (hours) 5 7 9 11 13 15
Due date (hours from now) 28 35 24 32 30 40

The problem is to sequence the six jobs so that work can begin.

Figure 9.3 displays a model for this problem. The first module contains the tabu-
lated data describing the specific problem to be solved. The next module contains a
row of decision variables corresponding to the job sequence. Each position in
sequence is assigned a job number (from 1 to 6). Since the sequence does not necess-
arily match the numbered sequence in which the data appear, we use the INDEX func-
tion to access the processing times and due dates that match the job in each sequence
position. For example, the formula in cell C11, for the processing time of the first job,
is ¼INDEX($C$4:$H$6,2,C$10). The INDEX function references the element
in the second row of the data in the column corresponding to the number in C10. A
similar function in cell C13 references the third row of the data, with the formula
¼INDEX($C$4:$H$6,3,C$10).

The processing times and due dates thus appear in rows 11 and 13. From the pro-
cessing times, we can compute the completion times directly, as shown in row 12. In
row 14, we compute tardiness values, working from the completion time and due date
in the two rows directly above and using the formula ¼MAX(0,C12-C13) in cell
C14, and then copying the formula to the right. We sum the tardiness values in cell
C16; this total represents the value of the objective function.

Figure 9.3. Spreadsheet for Example 7.4.
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In the cells corresponding to decision variables, we want to choose integers
between 1 and 6. Therefore, our first instinct might be to add constraints that restrict
the decision variables to integers no less than 1 and no greater than 6. However,
those constraints permit the choice of some jobs more than once. We would have to
add a module that tests for duplication and penalizes solutions that choose any job
multiple times. Wouldn’t it be nice if we could avoid the intricacies of this inefficient
filtering device and generate only solutions for which the integers in the decision cells
contain no duplicates?

The capability we seek is usually called an alldifferent constraint: It ensures that
the values of the decision variables form a set of integers with no duplicates. To
implement the alldifferent constraint, we enter the cell range as the left-hand side
and then use the drop-down menu of constraint types to select dif, as shown in
Figure 9.4. The alldifferent constraint fills the designated range of cells with the inte-
gers from 1 to n in some order, where n is the number of cells in the range.

A comparison with the integer programming model of Figure 7.14 shows that the
evolutionary solver model is more compact and easier to understand. Its layout on the
worksheet resembles the calculations we might make if we were verifying the value of
total tardiness with pencil-and-paper calculations. However, because the objective
function relies on the INDEX function and on the MAX function, it is a nonsmooth
model and cannot be solved using the linear solver.

We specify the problem as follows.

Objective: C16 (minimize)
Variables: C10:H10
Constraints: C10:H10 ¼ alldifferent

We run the evolutionary solver, starting arbitrarily with the solution 6-5-4-3-2-1 and
using the default options. The procedure may examine several thousand solutions, or it
may terminate due to the Convergence criterion. When we run the model again, start-
ing with the sequence generated by the previous run, we may get a better solution. This
cycle can be repeated if improvements are found. If not, we can try modifying the
initial sequence and re-running Solver. After a few trials of this sort, Solver is likely
to produce the solution shown in Figure 9.5, with a value of 33. We recognize this
as the optimal value, from our work in Chapter 7. There is no guarantee, however,
that another run of the very same model will terminate with this solution.

Figure 9.4. Specifying the alldifferent constraint.
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9.4. THE TRAVELING SALESPERSON PROBLEM
REVISITED

We encountered the traveling salesperson problem in Chapter 7, and we saw how to find
optimal solutions by starting with an assignment model and appending subtour
elimination constraints as needed. This approach required the solution of a series of
integer programs with an unpredictable number of constraints. For large problems,
the manual task of keeping track of the appended constraints could be daunting even
if the resulting integer programming problems could be solved in a reasonable
amount of time. As an alternative, we look at a solution approach that relies on the
evolutionary solver, revisiting the Douglas Electric Cart Company (Example 7.5).

Data from Example 7.5

In today’s schedule, there are six colors (C1–C6) with cleaning times as shown in the table
below.

C1 C2 C3 C4 C5 C6

C1 – 16 63 21 20 6
C2 57 – 40 46 69 42
C3 23 11 – 55 53 47
C4 71 53 58 – 47 5
C5 27 79 53 35 – 30
C6 57 47 51 17 24 –

Figure 9.5. Final solution for Example 7.4.
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The entry in row i and column j of the table gives the cleaning time required between product
batches of color Ci and color Cj. Each production run consists of a cycle through the full set of
colors, and the operations manager wishes to sequence the colors so that the total cleaning time
in a cycle is minimized.

Using the evolutionary solver, our formulation can be much more compact and
readable than the integer programming model. Figure 9.6 displays a spreadsheet
model for Example 7.5. The first module contains the distance array, which serves
as the given data for the problem. Then, in the second module, the decision variables
are listed in row 13, comprising the sequence of cities in the tour. For an n-city pro-
blem, this simply means a single row listing the integers from 1 to n, in some order.
By definition, a tour must return to its starting point, so we repeat the starting city
in cell I13. (This cell is not a decision variable; it is simply a reference to cell C13.)

Directly below the cells of the tour, we capture the distances between pairs of
cities on the tour, as shown in Figure 9.6. Again, we can use the INDEX function
for this purpose. For example, the distance corresponding to the pair in cells
C13 and D13 is isolated in cell D14 with the formula ¼INDEX($C$5:

$H$10,C13,D13), which is copied to the right. In the third module, consisting of
cell D17, we compute the sum of the pairwise distances calculated in row 14. This
sum represents the total tour length.

The inputs and the outputs of this calculation are more natural than in the case
of an integer programming formulation. In addition, the spreadsheet is easier to

Figure 9.6. Spreadsheet model for Example 7.5.
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understand on its face. However, because we use the INDEX function as a component
in the objective function, this is a nonsmooth model, and it is not appropriate for either
the linear solver or the nonlinear solver.

We specify the problem as follows.

Objective: D17 (minimize)
Variables: C13:H13
Constraints: C13:H13 ¼ alldifferent

Even with the default settings, we are likely to obtain a solution of 167, as shown in
Figure 9.7. (In Chapter 7, we found that this value was optimal.) The evolutionary
solver rather quickly finds the tour 6-5-3-1-2-4, which matches the optimal tour found
in Chapter 7. (Starting the tour at city 1 corresponds to the solution 1-2-4-6-5-3-1.)

Is the evolutionary solver always capable of finding an optimum with such limited
effort? Unfortunately, it’s not. It is difficult to generalize about the effectiveness of the
evolutionary solver on sequencing problems, but some experience suggests that pro-
blems of finding the best sequence can be solved to optimality with modest effort if
the sequence length is 10 or sometimes 15. In the traveling salesperson problem, as
in the machine sequencing problem, the model is simpler and the solution is obtained
more quickly using the evolutionary solver than with an integer programming
approach. However, the evolutionary solver cannot guarantee optimality. Next, we
turn to problems that we have not previously solved, so that we will not know the opti-
mum when we set out to find a solution.

Figure 9.7. Final solution for Example 7.5.
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9.5. TWO-DIMENSIONAL LOCATION

In many location decisions, costs are mainly determined by geographic distances, and
it is possible to gain some insight into location possibilities by building models based
on the geometry of physical location. Consider the location problem facing Drezner
Chemical Company.

EXAMPLE 9.1 Drezner Chemical Company

Drezner Chemical Company delivers its products to 10 firms in the wholesale chemicals
business and will continue to do so when its new plant comes on line and replaces current pro-
duction. The actual customers who use Drezner’s products can be classified into clusters, with
each cluster serviced by a single wholesaler. From Drezner’s point of view, however, each clus-
ter represents one demand source because each wholesaler handles the logistics for all of the
customers in its cluster. The transportation cost for the new plant will be related to the distances
between the plant and each of the clusters. Since the wholesalers are responsible for the logistics
within each cluster, Drezner delivers to the nearest member of the cluster. Truck capacity will
not be a factor in the foreseeable future.

The customer base is spread out over the state, which to good approximation can be viewed
as a square, 100 miles on each side. Each customer within each cluster has a location in that
square, denoted by the (x, y) pair on a graph that has a lower left-hand point at the origin and
an upper right hand point at (100,100). There are 10 customers in each cluster.

Drezner makes one round-trip delivery to each cluster every week. The distance for a round
trip is twice the distance from the plant to the nearest point in the cluster. The Euclidean distance
metric applies: if (xk, yk) denotes the location of cluster k, then the distance to cluster k from the
plant at (x, y) is given by

Dk(x, y) ¼ [(x� xk)2 þ ( y� yk)2]1=2

Based on this geometric model, Drezner wishes to find the optimal location for its plant. B

A model for the problem is shown in Figure 9.8, with some columns omitted. The
first module contains the customer location data—100 pairs of (x, y) values describing
each customer’s location, organized into 10 sets for each of 10 clusters. The second
module contains the decision about the plant’s location, represented by x- and y-
coordinates in cells B20:C20. This module also contains the objective function. The
Results module contains distances from the plant to each of the 100 customers,
again organized in 10 sets of 10. At the bottom of the Results module, we calculate
the minimum distance in the cluster, and the objective function (cell E20) sums the
lengths of the 10 distances and multiplies by two to account for round trips.

We specify the model as follows.

Objective: E20 (minimize)
Variables: B20:C20
Constraints: B20:C20 � 100

B20:C20 � 0
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The last of these constraints can be omitted if we check the option for Assume Non-
Negative instead. But in any case, this model is ready for the evolutionary solver.

It is instructive to attack this problem with the nonlinear solver. Although the
reliance on the square-root formula for distances might suggest that the nonlinear
solver should work effectively, it turns out that the solution is sensitive to the starting
point, and several local minima exist. The table below lists five cases, showing the
starting point, the solution produced by the nonlinear solver, and the corresponding
value of the objective function.

Starting Local Solution
solution optimum value

(40, 60) (23.00, 53.00) 266.12
(45, 55) (48.32, 48.75) 250.60
(50, 50) (49.09, 49.92) 251.32
(55, 45) (48.32, 48.75) 250.60
(60, 40) (48.32, 48.75) 250.60

We might be inclined to conclude that the optimal location is in the vicinity of
(50, 50), with an objective function value close to 250. However, we discover a
different story when we use the evolutionary solver.

Figure 9.8. Spreadsheet model for Example 9.1.
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When we switch to the evolutionary solver, we are very likely to find improve-
ments. Recall that there is some built-in randomness and the evolutionary solver
does not necessarily stop with the same solution each time. In addition, the developers
of the evolutionary solver offer the following advice for producing solutions.

† Restart the evolutionary solver, using the solution it produced on the first run, to
see if an improvement can be found.

† Restart the evolutionary solver with changes in the Convergence value (tighter)
or the Tolerance value (tighter, if it’s not already zero).

† Restart with a larger Population Size parameter and/or a larger Mutation Rate
parameter. These changes will result in longer runs, and they tend to examine a
larger number of candidate solutions.

† Switch to the nonlinear solver and see whether it can produce an improvement.

Finally, some insight may come from examining Solver’s Population Report. Stability
in the Best Values and relatively small Standard Deviations are signs to look for. Those
signs suggest little room for improvement.

Using just the first of the listed suggestions, and restarting Solver a few times, we
are likely to encounter a solution that is significantly better than those found with the
nonlinear solver. For example, the evolutionary solver may find the objective function
value of 217.61 at a plant location of (87.33, 53.43). By using the evolutionary solver,
Drezner can find a location that improves on the solution generated by the nonlinear
solver. If the distance metric is a good proxy for annual distribution expenses,
Drezner will be able to reduce its expenses more than 13 percent by using the evol-
utionary solver, as compared to the decisions it would have reached using the non-
linear solver.

9.6. LINE BALANCING

The line-balancing problem arises in the design of a new production process for
assembled products. Examples might include home appliances (refrigerators), elec-
tronics (televisions), light vehicles (lawn mowers), and automobiles. At the end of
the product design phase, the product and its components are well known, and so
are the specific tasks that must be carried out to make the product. The next step is
to design the production line on which the product will be assembled.

The first type of information is the time required for each task. Required times
might be based on previous experience with the same task in other lines or estimated
by experts in work measurement techniques. The second type of information is pre-
cedence information. In other words, we need to know which tasks must be completed
before some other task can begin. We say, “task j precedes task k” to mean that k
cannot begin until j is completed. Precedence information can be expressed in a list
or in a diagram.

The production line typically has a target output rate—so many units per hour.
The cycle time is the inverse of the output rate. For example, if we specify a target
of five units per hour, the cycle time is 1/5 of an hour, or 12 minutes.
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The physical production line consists of several work stations, typically numbered
according to their position along the line. At each station, a single operator carries out a
set of tasks. The problem is to assign the various tasks to stations. The criterion is to
use as few stations as possible, since the number of stations dictates the number of
operators, and therefore the labor cost per unit. There are essentially two types of con-
straints. First, the amount of work assigned to any individual station may not exceed
the cycle time; otherwise, the target production rate cannot be met. Second, no task can
appear earlier in the line (i.e., at a lower-numbered station) than any of its predecessor
tasks. An example arises at Munoz Manufacturing Company, in the assembly of
microwave ovens.

EXAMPLE 9.2 Munoz Manufacturing Company

Along with the design of a new countertop oven, the manufacturing engineers at Munoz
Manufacturing Company have determined the 12 distinct tasks that comprise the assembly
process. They have summarized this information in a table showing the time for each task
and its logical predecessors—that is, the tasks that must be done earlier in the process.
Predicted volume targets have been translated into a desired cycle time of 15 minutes. The
following table shows the relevant information.

Task Time Predecessors

1 12 –
2 6 1
3 6 2
4 2 2
5 2 2
6 12 2
7 7 3 4
8 5 7
9 1 5
10 4 6 9
11 6 8 10
12 7 11

To complete the design of the production process, the individual tasks must be assigned
to stations, respecting the desired cycle time and minimizing the number of stations
required. B

The precedence relations among activities in a line-balancing problem present
a significant challenge in formulating and implementing an optimization model.
Moreover, optimization models usually require a large number of variables for a
design of realistic scale. For those reasons, line-balancing problems are often solved
by heuristic methods. Here, we describe an approach to solving the line-balancing
problem that relies on the evolutionary solver.
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Figure 9.9 shows a spreadsheet model, with the given information reproduced in
columns A–D. The optimization model occupies columns F–L. Row 3 contains the
desired cycle time, a penalty, and the objective function. The penalty, shown in this
example as the value 999, must be a large number, adjusted to the scale of the data
in the problem.

The range F7:F18 contains the decision variables of the model. These are the
station numbers assigned to the tasks. These variables must be integers starting at 1
and increasing to the number of stations in the solution. Although we don’t know
that number in advance, we can make a conservative guess and use this guess as an
upper bound when we specify the problem. The solution in column F of Figure 9.9
arbitrarily assigns two tasks to each station, proceeding roughly in order of the
tasks. Columns G and H reference the predecessors in columns C and D and look
up their stations using the INDEX function. The two columns allocated to the prede-
cessor list in the given data (columns C and D) and the two columns allocated to the
predecessor-station list in the model (columns G and H) are used because no task in the
problem has more than two predecessors. Obviously, this layout would have to be
modified for problems with more than two predecessors for some tasks.

Column I contains a feasibility check to see whether each task is assigned a station
number at least as large as that of its predecessors. If not, the penalty from cell E2 is
assigned. In the solution of Figure 9.9, task 10 is assigned to station 6 and task 11 to
station 5. But task 10 is a predecessor to task 11, so those assignments are out of pre-
cedence order. Hence the penalty in cell I17.

Columns J, K, and L represent a table that examines the solution station by station.
(This table may actually not need the same number of rows as the rest of the model, but
extra rows can simply be assigned zeros.) Column K shows the total time assigned to
each station, using the SUMIF (see Box 9.2) function. Finally, column L contains

Figure 9.9. Spreadsheet model for Example 9.2.
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another feasibility check and assigns a penalty to any station assigned a total time that
exceeds the desired cycle time in cell C3.

Finally, cell G3 is the objective function. It contains the maximum value among
the decision variables (the assigned station numbers), augmented by the total of the
penalties. The use of penalties thus substitutes for explicit feasibility constraints.
The only constraints that need to be specified for Solver are the upper and lower
limits on the station assignments. As mentioned earlier, the lower limit is obviously
one, but the upper limit requires an educated guess. In the worst case, each task
would be assigned its own station, so we can always use the number of tasks as an
upper limit. We specify the problem as follows.

Objective: G3 (minimize)
Variables: F7:F18
Constraints: F7:F18 � 12

F7:F18 � 1
F7:F18 ¼ integer

One last step is helpful in the line-balancing model. As we use the evolutionary
solver to search among solutions, it is helpful to know a lower bound on the minimum
possible number of stations. This lower bound can be calculated by taking the sum of
the task times, dividing by the desired cycle time, and rounding up to the next larger

BOX 9.2 Excel Mini-Lesson: The SUMIF Function

The familiar SUM function in Excel computes the total value in the cells of a specified
range. The SUMIF function is similar, in that it totals the values in a range of cells
(called the sum range), but it includes only those items in the range for which a specified
criterion is met. To satisfy the criterion, a specified condition must be met in a specified
range. The form of the function is the following.

¼ SUMIF(Specified range, Criterion, Sum range)

In Example 9.2, we have

Specified range: F7:F18 (the list of station assignments)

Criterion: a reference to a cell in column J (that is, a station number)

Sum range: B7:B18 (the list of task times).

Thus, in cell K10 we have the formula ¼SUMIF($F$7:$F$18,J10,$B$7:$B$18).
This function scans the list in column F to see if any entries match the contents of cell
J10 (which is station number 4), and if so, the corresponding entry in column B is included
in the sum. When the entire list has been scanned, the function returns the sum of the task
times assigned to station 4, which in this case is 12.
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integer. This bound follows from the observation that if the tasks were packed into
stations with perfect efficiency, the sum of the task times at each station would
equal the desired cycle time, and the total sum of the task times divided by the
cycle time would give the number of stations. In Example 9.2, the sum of the task
times divided by the desired cycle time yields the value 4.67, which rounds up to 5.
This calculation appears in cell G20. It allows us to stop searching if we see that
the evolutionary solver has located a solution with this value. However, it is important
to keep in mind that the lower bound may not be achievable; the optimal solution may
lie above the lower bound, so we will not always be able to tell whether our searching
should be terminated. In Example 9.2, the evolutionary solver leads us repeatedly to a
solution with 6 stations, but we cannot be sure whether an improvement to five is poss-
ible. Figure 9.10 shows one of those solutions. In this solution, task 1 alone is assigned
to station 1; tasks 2–4 are assigned to station 2; and then tasks are assigned in numeri-
cal order, two to a station. From this solution, however, we cannot know whether a
five-station solution exists, but Munoz still has a reasonably efficient set of station
assignments for its assembly line.

9.7. GROUP ASSIGNMENT

In several different application areas, a common problem involves the organization
of items or people into groups. Often, the goal is to place similar items in the same
group, as in cellular manufacturing (where we try to group similar parts together)
or in positioning analysis (where we try to group similar products together).
Sometimes, the goal is the opposite: to place different items in the same group. A fam-
iliar example in educational programs involves the formation of diverse student teams
(where we try to form groups of students with dissimilar backgrounds for the purposes

Figure 9.10. Final solution for Example 9.2.
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of carrying out a particular group task). Business applications of the same type of
model arise when consultants are assigned to different project teams or trainees are
assigned to discussion groups. An example of forming student groups arises in a
typical course project.

EXAMPLE 9.3 Oxbridge College’s Accounting Department

Each term, the Accounting Department at Oxbridge assigns students to teams for the purposes of
a simulated audit engagement. In this problem, we are given a description of each student on
various dimensions, expressed with a set of zeros and ones. In particular, the Department has
recorded the following information for each student.

† Majored in accounting as an undergraduate (1 ¼ yes, 0 ¼ no).

† Previously worked for an accounting firm (1 ¼ yes, 0 ¼ no).

† Gender (1¼ male, 0 ¼ female).

† International background (1 ¼ yes, 0 ¼ no).

This term, 20 students will be participating in the exercise, and there will be five 4-person
teams. For the purposes of this exercise, the Department’s goal is to achieve diversity in its
assignment of students to teams. B

In Example 9.3, each student is described by a string of four binary digits. For
example, a male student from the US who had not majored in accounting but
had worked for an accounting firm would be represented by the string {0, 1, 1, 0}.
A natural definition of decision variables for this problem is the following

x jk ¼ 1 if student j is assigned to group k, and 0 otherwise.

Suppose now that we want to form five teams of four students each. We can
express the essential constraints in the problem as follows

X

j

x jk ¼ 4 for k ¼ 1 to 5

X

k

x jk ¼ 1 for j ¼ 1 to 20

The first set of these constraints fixes the size of each group; the second set ensures
that each student is assigned to a unique group. If we model the decisions this way,
the problem contains 25 constraints and 100 variables. This is too large a pair of
numbers to expect the evolutionary solver to perform effectively.

The usual approach to an objective function builds on a metric that, for each attri-
bute, calculates the sum of squared differences from the population average. Suppose,
for example, that there are 10 accounting majors in the group of 20. Then the average
number per group is two. Suppose that the number of accounting majors assigned to
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the respective groups follows the profile {1, 2, 2, 3, 2}. Then the calculation of the
performance measure is as follows.

(1� 2)2 þ (2� 2)2 þ (2� 2)2 þ (3� 2)2 þ (2� 2)2 ¼ 2

If the profile is {1, 0, 2, 3, 4}, then the metric is 10. Clearly, the ideal distribution
of accounting majors among the groups would generate a metric of zero. For an objec-
tive function, we usually calculate the metric for each attribute and then sum over the
attributes. This objective function can thus be expressed as a nonlinear function of the
decision variables xjk.

Although this is a natural formulation of the problem, it creates difficulties for two
types of solution approaches. First, a direct formulation as an optimization problem
leads to a nonlinear programming model with integer variables. As we pointed out
in Chapter 8, this class of problems is poorly suited to the nonlinear solver. Instead,
it makes sense to tackle the problem with the evolutionary solver. However, the natural
formulation is also poorly suited to the evolutionary solver because it has many con-
straints and variables.

An alternative formulation of the problem can take advantage of the alldifferent
constraint. Here, we let

yi ¼ student number assigned to position i

where there are 20 positions: four corresponding to the first group, four for the second
group, and so on. The assignment of students to positions is equivalent to an assign-
ment of students to groups. In our example, the yi values need to satisfy the alldifferent
constraint for the integers from 1 to 20. From that definition, we can build a spread-
sheet model well suited to the evolutionary solver. Figure 9.11 shows the model.
The problem data occupy columns A–E, with a four-element string for each student.
The solution is described in columns I–K, where the shaded decision cells give the
assignment of student numbers to groups and positions. The squared differences
between each group’s attribute count and the population mean are calculated in col-
umns P–S, and their sum appears in cell G5 as the objective function. Although
this may seem to be a complicated way of computing the objective, it is nevertheless
suitable for the evolutionary solver.

We specify the problem as follows.

Objective: G5 (minimize)
Variables: K5:K24
Constraints: K5:K24 ¼ alldifferent

Again, the alldifferent constraint is sufficient to capture the constraints of the model.
Starting with different assignments, the evolutionary solver takes us in most cases to a
solution with a metric of 4 quite quickly (see Figure 9.12), suggesting, perhaps, that
this is likely to be the optimal value. Alternative starting points and modifications
of the options do not seem to produce any improvement. Again, this is stronger evi-
dence that we might have found the optimum, although the evidence is not conclusive.
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By using the evolutionary solver, administrators at the Accounting Department can
achieve their assignment goals where other methods, such as nonlinear integer pro-
gramming, would likely have failed.

The group assignment problem illustrates the fact that there may be creative
ways of formulating models to take advantage of the alldifferent constraint.
This means that we may want to think beyond the typical structures of linear and
nonlinear programming models, but no standard templates have been developed in
this regard.

Figure 9.12. Final solution for Example 9.3.

Figure 9.11. Spreadsheet model for Example 9.3.
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SUMMARY

The evolutionary solver contains an algorithm that complements the linear solver, the nonlinear
solver, and the branch-and-bound procedure. Unlike those algorithms, however, it does not
explicitly seek a local optimum or a global optimum. Nevertheless, it can often find optimal sol-
utions to very difficult problems, and it may be the only effective procedure we can apply when a
nonsmooth function exists in the model.

The considerations influencing the building of models for the evolutionary solver are
different from those for linear and nonlinear programs. Because nonsmooth functions are per-
mitted, we have great flexibility in drawing on Excel’s various built-in functions if we wish to
calculate complex results in convenient ways. Also, experience suggests that the evolutionary
solver performs best if the number of variables and the number of constraints is not large. To
avoid constraints, we can often impose a numerical penalty when a condition is violated and
include the penalty in the objective function instead of entering the constraint explicitly.
Having built a model this way, it is helpful if we can start with an initial solution that satisfies
all constraints—that is, a solution without penalties. Otherwise, the evolutionary solver may not
be effective at finding feasible solutions (those without penalties) in models that contain penalty
terms in the objective.

The evolutionary solver is not likely to be trapped by local optima, as is the case with the
nonlinear solver. This feature is advantageous in searching for good solutions to problems con-
taining nonsmooth functions, especially nonlinear problems with integer variables. On the other
hand, we must realize that the search procedure is both random (subject to probabilistic vari-
ation) and heuristic (not guaranteed to find an optimum). For that reason, we usually reserve
the use of the evolutionary solver for only the most difficult problems.

The evolutionary solver works with a set of specialized parameters. Although we offered
default settings, these settings are merely a starting point. Different choices might be suitable
for different problem types. In addition, we may want to use one set of choices at the start
and then other settings in subsequent runs, while we look for improvements. As compared
to arbitrary settings, the intelligent selection of these parameters can enhance the performance
of the evolutionary solver considerably. Aside from the guidelines given here, practice
and experience using the evolutionary solver are the key ingredients in effective parameter
selection.

EXERCISES

9.1. Sequencing Jobs A fundamental model in scheduling contains a set of jobs that are
waiting to be processed by a machine or processor. The machine is capable of handling
only one job at a time, so the jobs must be processed in sequence. The problem is to find
the best sequence for a given objective function.

For example, the processor might be an integrated machining center that performs a
number of metal-cutting operations on components for complex assemblies. Ten different
components have reached the center and are awaiting processing. These jobs and their
processing times (expressed in hours) are described in the following table. In addition,
each job has a corresponding due date that has been calculated by the production control
system. As a result of the sequence chosen, each job will either be on time or late. If it is
late, the amount of time by which it misses its due date is called its tardiness. The objec-
tive is to minimize the total tardiness in the schedule.
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Job 1 2 3 4 5 6 7 8 9 10

Processing time 6 1 2 5 9 8 12 3 9 7
Due date 17 5 25 15 20 8 44 24 50 20

What is the minimum total tardiness and the sequence that achieves it?

9.2. Scheduling a Shop Midwest Parts Supply (MPS) is a fabricator of small steel parts
that are sold as components to manufacturers of electronic appliances and medical equip-
ment. In the MPS fabrication department, steel sheets are subjected to a series of three
main operations—cutting, trimming, and polishing. Each job must have the operations
completed in this order, and each machine sees the same job order, so it is sufficient to
specify a single job sequence in order to describe a schedule. No machine can process
more than one job at a time.

This morning, 10 jobs have been released to the shop by the ERP system, and the
production manager is interested in minimizing the time it takes to complete the entire
schedule, usually referred to as the schedule makespan. The following table gives the
number of hours required for each operation.

Job 1 2 3 4 5 6 7 8 9 10

Cutting time 1 5 3 7 9 7 8 8 3 6
Trimming time 2 9 2 10 7 6 9 9 1 1
Polishing time 9 7 3 4 7 8 9 4 1 3

What sequence achieves the minimum makespan and what is the minimum length of a
schedule?

9.3. Planning a Tour Recent graduate and amateur world traveler Alastair Bor is planning
a European trip. His preferences are influenced by his curiosity about urban culture in
Europe and by his extensive study of international relations while he was in school.
Accordingly, he has decided to make one stop in each of 12 European capitals in
the time he has available. He wants to find a sequence of the cities that involves the
least total mileage. He has calculated inter-city distances using published data on latitude
and longitude, and applying the geometry for arcs of great circles. These distances are
shown below.

Ams. Ath. Ber. Brus. Cope. Dub. Lis. Lon. Lux. Mad. Par. Rom.

From

Amsterdam – 2166 577 175 622 712 1889 339 319 1462 430 1297
Athens 2166 – 1806 2092 2132 2817 2899 2377 1905 2313 2100 1053
Berlin 577 1806 – 653 348 1273 2345 912 598 1836 878 1184
Brussels 175 2092 653 – 768 732 1738 300 190 1293 262 1173
Copenhagen 622 2132 348 768 – 1203 2505 942 797 2046 1027 1527
Dublin 712 2817 1273 732 1203 – 1656 440 914 1452 743 1849
Lisbon 1889 2899 2345 1738 2505 1656 – 1616 1747 600 1482 1907
London 339 2377 912 300 942 440 1616 – 475 1259 331 1419
Luxembourg 319 1905 598 190 797 914 1747 475 – 1254 293 987
Madrid 1462 2313 1836 1293 2046 1452 600 1259 1254 – 1033 1308
Paris 430 2100 78 262 1027 743 1482 331 293 1033 – 1108
Rome 1297 1053 1184 1173 1527 1849 1907 1419 987 1308 1108 –

What sequence achieves a minimum-distance tour for Alastair, starting in Brussels,
and what is the minimum tour length?
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9.4. Cutting Stock Poly Products sells packaging tape to industrial customers. All tape is
sold in 100-foot rolls that are cut in various widths from a master roll, which is 15
inches wide. The product line consists of the following widths: 200, 300, 500, 700, and 1100.
These can be cut in different combinations from a 15-inch master roll. For example,
one combination might consist of three cuts of 500 each. Another combination might con-
sist of two 200 cuts and an 1100 cut. Both of these combinations use the entire 15-inch roll
without any waste, but other combinations are also possible. For example, another com-
bination might consist of two 700 cuts. This combination creates one inch of waste for
every roll cut this way.

Each week, Poly Products collects demands from its customers and distributors
and must figure out how to configure the cuts in its master rolls. To do so, the production
manager lists all possible combinations of cuts and tries to fit them together so that waste
is minimized while demand is met. (In particular, demand must be met exactly, because
Poly Products does not keep inventories of its tape.) This week’s demands are shown
in the table.

Size 200 300 500 700 1100

Demand 60 50 40 30 20

(a) How many combinations can be cut from a 15-inch master roll so that there is less
than two inches of waste (i.e. the smallest quantity that can be sold) left on the roll?

(b) Find a set of combinations that meets demand exactly and generates the minimum
amount of waste. (Stated another way, the requirement is to meet or exceed
demand for each size, but any excess must be counted as waste.) What is the optimal
set of combinations and the minimum amount of waste?

9.5. Locating Warehouses Southeastern Foods has hired you to analyze their distribution
system design. The company has 11 distribution centers, with monthly volumes as
listed below. Seven of these sites can support warehouses, in terms of the infrastructure
available, and are designated by (W).

Center Volume Center Volume

Atlanta (W) 5000 Memphis (W) 7800
Birmingham (W) 3000 Miami 4400
Columbia (W) 1400 Nashville (W) 6800
Jackson 2200 New Orleans 5800
Jacksonville 8800 Orlando (W) 2200
Louisville (W) 3000

The monthly fixed cost for operating one of these warehouses is estimated at
$3600, although there is no capacity limit in their design. Southeastern could build ware-
houses at any of the designated locations, but its criterion is to minimize the total of
fixed operating costs and variable shipment costs. Information has been compiled show-
ing the cost per carton of shipping from any potential warehouse location to any distri-
bution center.
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Atl Bir Col Jac Jvl Lvl Mem Mia Nash NewO Orl

Atlanta 0.00 0.15 0.21 0.40 0.31 0.42 0.38 0.66 0.25 0.48 0.43

Birmingham 0.15 0.00 0.36 0.25 0.46 0.36 0.26 0.75 0.19 0.35 0.55

Columbia 0.21 0.36 0.00 0.60 0.30 0.50 0.62 0.64 0.44 0.69 0.44

Louisville 0.42 0.36 0.50 0.59 0.73 0.00 0.38 1.09 0.17 0.70 0.86

Memphis 0.38 0.26 0.62 0.21 0.69 0.38 0.00 1.00 0.21 0.41 0.78

Nashville 0.25 0.19 0.44 0.41 0.56 0.17 0.21 0.91 0.00 0.53 0.69

Orlando 0.43 0.55 0.44 0.70 0.14 0.86 0.78 0.23 0.69 0.65 0.00

(a) What is the minimum total cost?

(b) To achieve the cost in (a), which warehouse locations should be used?

9.6. Locating Emergency Centers After the damage caused in Florida by a series of
severe hurricanes, the governor ordered the Florida Emergency Management Agency
(FLEMA) to design a systematic plan for emergency services following severe
weather events. The state has 11 emergency offices, and it would be possible to build a
warehouse next to each of the offices to store emergency equipment. As a consultant to
FLEMA, you were asked to determine how many centers would be needed to ensure
that there would be a warehouse within 50 miles of any emergency office. After studying
your recommendation, however, FLEMA’s Director decided that the cost of the plan
would be prohibitive, so a revised formulation was developed. This one requires building
just four warehouses.

With this standard in mind, you have obtained the distances between the eleven
offices (identified by their cities).

DB Ft L Ft M Gain Mia Nap Orl St P Sara Talla Tam

Daytona
Beach

0 229 207 98 251 241 54 159 186 234 139

Ft Lauderdale 229 0 133 312 22 105 209 234 202 444 234
Ft Myers 207 133 0 230 141 34 153 110 71 356 123
Gainesville 98 312 230 0 331 264 109 143 179 144 128
Miami 251 22 141 331 0 107 228 251 214 463 245
Naples 241 105 34 264 107 0 187 143 107 389 156
Orlando 54 209 153 109 228 187 0 105 132 242 85
St Petersburg 159 234 110 143 251 143 105 0 39 250 20
Sarasota 186 202 71 179 214 107 132 39 0 286 53
Tallahassee 234 444 356 144 463 389 242 250 286 0 239
Tampa 139 234 123 128 245 156 85 20 53 239 0

FLEMA would like to ensure that there will be a warehouse center within x miles of any
office. What is the minimum value of x that can be achieved when there are four ware-
houses in the system?

9.7. Touring the Agents Professor Moonlight runs a fund of funds in order to supplement
his academic salary. Every winter, he pays a visit to each of the fund managers with whom
he works. These visits are all made in one trip, during which he visits investment agents in
nine cities. Prof. Moonlight doesn’t mind flying, but he dislikes long flights. For this trip,
he wants to find a route through the various cities starting and ending in San Antonio, and
he wants the longest leg of the trip (measured in miles) to be as short as possible. The pair-
wise distances in miles are shown below.
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San
Antonio Phoenix

Los
Angeles Seattle Detroit Atlanta New York Boston Philadelphia

San Antonio 0 602 1376 1780 1262 935 1848 2000 1668
Phoenix 602 0 851 1193 1321 1290 2065 2201 1891
Los Angeles 1376 851 0 971 2088 2140 2870 2995 2702
Seattle 1780 1193 971 0 1834 2178 2620 2707 2486
Detroit 1262 1321 2088 1834 0 655 801 912 654
Atlanta 935 1290 2140 2178 655 0 940 1096 765
New York 1848 2065 2870 2620 801 940 0 156 180
Boston 2000 2201 2995 2707 912 1096 156 0 333
Philadelphia 1668 1891 2702 2486 654 765 180 333 0

(a) What is the minimum value of the trip’s longest leg?

(b) What is the optimal tour?

9.8. Optimizing Capacity Pelham Power Company (PPC) uses a system of boilers and tur-
bines to produce power. PPC owns five boilers. If a given boiler is operated, it can produce
steam within an output range given in the following table. Quantities are shown in tons.
The cost per ton of producing steam is also shown in the table.

Boiler 1 2 3 4 5

Min. 300 325 350 355 375 tons of steam
Max. 800 820 840 920 960 tons of steam
Cost 2.20 2.35 2.50 2.65 2.80 dollars per ton

of steam

Steam from the boilers is used by the turbines to produce power. PPC owns four tur-
bines. If a given turbine is operated, it can produce power from steam at the rate given in
the following table. The amount of steam each turbine can accommodate is also shown in
the table, along with the maximum and minimum of its input range (in tons of steam). The
cost of producing power is also shown in the table.

Turbine 1 2 3 4

Rate 4.00 4.50 5.00 5.50 kwh per ton of steam
Min. 420 450 480 510 tons of steam
Max. 825 875 925 975 tons of steam
Cost 2.15 2.50 2.75 2.95 dollars per ton of steam

What is the minimum cost of deploying boilers and turbines to produce 10,000 kwh
of power at PPC?

9.9. Balancing Workloads Over the next six weeks, an insurance company needs to send
more than 1.75 million pieces of marketing literature to customers in 16 states. In order to
coordinate with other marketing efforts, all the mailings for a given state must go out the
same week (i.e., if mailings for Georgia are sent in week 2, then all 136,562 pieces of mail
for Georgia must be sent that week). The operations manager would like to minimize the
largest amount of mail processed in any given week during the four-week campaign. The
required volumes are shown below.
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State Volume

AZ 82,380
CA 212,954
CT 63,796
GA 136,562
IL 296,479
MA 99,070
ME 38,848
MN 86,207
MT 33,309
NC 170,997
NJ 104,974
NV 29,608
OH 260,858
OR 63,605
TX 214,076
VA 134,692

(a) Determine which states should be assigned for processing each week in order to
achieve the desired objective.

(b) What is the largest amount of mail processed in any given week?

9.10. Scheduling Power Plants During the next 8 months, Metropolis Power Company fore-
casts the demands shown below (measured in thousands of kwh).

Month 1 2 3 4 5 6 7 8

Demand 96 154 148 77 84 92 119 126

The power will be supplied from the four generating facilities, GF1–GF4. The facilities
are each characterized by a generating capacity, a monthly operating cost, a startup cost,
and a shutdown cost. These are each shown in thousands of dollars in the table below.
When a generator is in operation, it provides service at its full capacity, even if that
exceeds demand. No operating cost is saved by partial (rather than full) use of a genera-
tor’s capacity. At the beginning of each month, it is possible to shut down any of the facili-
ties that have been operating or to start up any of the facilities that have been idle, with the
cost implications indicated in the table.

Facility Capacity Cost Startup Shutdown

GF1 70 8 4 3
GF2 60 7 3 2
GF3 50 6 3 2
GF4 40 5 2 3

At the start of month 1, facilities GF1 and GF2 are in operation.
What is the minimum total cost of providing the power demanded?
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9.11. Team Assignment A new class of 15 students has been admitted to the graduate Film
Studies program at the State University. During much of the first year, these students will
be working on teams, producing short films. The program director wants to assign stu-
dents to teams so that the teams are as diverse as possible. There will be three teams of
five students each.

Diversity is measured based on four characteristics or factors: undergraduate film
major (1 if yes, 0 if no), previous employment in the film industry (1 if yes, 0 if no), inter-
est in documentaries (1 if so, 0 otherwise), and gender (1 if female, 0 if male). Thus, each
student is represented by four factor ratings.

Student UG Emp Int Feml

1 0 0 0 0
2 0 1 1 0
3 1 0 1 1
4 1 0 0 0
5 0 1 1 0
6 0 0 1 1
7 1 0 0 0
8 0 0 1 0
9 0 0 1 1
10 0 1 0 0
11 1 1 1 0
12 0 0 1 0
13 1 0 0 1
14 1 0 1 0
15 0 1 0 0
Total 6 5 9 4
Average 2.00 1.67 3.00 1.33

For a given factor j, team i has a factor rating (ci,j for factor j) equal to the total
number of 1s among its team members. The challenge is to convert a profile of factor
ratings into a quantitative measure of diversity. A specific diversity measure has been
adopted, based on the principle that if the teams “resemble” each other, then the
makeup of the teams must be diverse. The calculation is made as follows. Find the average
factor rating per team. (This figure can be computed from the raw data, as shown in the
table.) For each group, calculate the absolute deviation between its rating and the average
factor rating on the same factor. Sum the four deviations to get the group value. Sum the
three group values to get a total. Minimize the total. This measure would have a value of
zero if the teams resembled each other perfectly. In symbols, the diversity measure is

z ¼
X3

i¼1

X4

j¼1

jci, j � �cjj

Find the assignment of students to teams that minimizes the diversity measure z.
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9.12. Making Car Assignments You are organizing rides for a group of campers going on an
all-day, off-site trip. You have lined up some drivers, and your problem, essentially, is to
assign campers to drivers. The drivers, and the capacities of their cars, are provided in the
following table.

Driver Capacity

Saul 5
Chris 4
Rob 3
Erick 5
Anna 6
Jim 5

The campers represent different age groups. Each age group is to be delivered to a
different location. Thus, if a car holds campers of different ages, then the driver will
have to drive to different destinations. An ideal solution would require each driver to
go to just one location. However, such a solution is unattainable. The campers and
their age groups are listed in the table below.

Group Camper Group Camper

Age 7 George Age 9 Eric
Marcia Scott
Steve Sarah
Andrew Gretchen
Brian Jamie
Suzanne Liz

Age 8 Lisa Age 10 Patty
Ben Francesca
Tommy Adrian
Vanessa Ali
Alberto Cliff
Jason Mickey
Sean Matt

Although we know what an “ideal” solution would look like, we need a metric for
evaluating less-than-ideal solutions. One suitable metric is the total number of delivery
stops. Find the minimal number of stops and the assignment of campers to cars that
achieves it.
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Case: Colgate Wave (Abridged)�

Introduction
In 1996, Colgate-Palmolive was trying to maintain its market presence in the tooth-
brush category, with three strong brands spanning the price spectrum. Colgate
Classic was the company’s low-priced brand, Colgate Plus was a mid-priced, pre-
mium brand, and Colgate Total represented the company’s most recent entry (three
years earlier) into the super-premium segment. There were several competitors in
each of these three market segments, but Colgate had been the market leader, with
a total share of about 24 percent in 1995, followed by Gillette (Oral B) and Procter
& Gamble (Crest) with 18 percent and 16 percent, respectively. By 1996, however,
Colgate’s market share was slipping in the face of dual pressures: low prices from
private-label brands and new entries from competitors in the premium/super-premium
sector.

The company was closely monitoring its market share in the super-premium
and premium segments. These segments not only provided higher dollar margins
than the lower segment, but they were also expected to expand as consumers
became more conscious of oral hygiene. Therefore, Colgate had been planning to
introduce a new super-premium toothbrush named Wave. Exhibit 9.1 provides a
concept description of the Wave toothbrush. Colgate had conducted a concept test
for the product, and the results had been quite promising.

The company also felt it was important to preserve its product portfolio share in
the premium and super-premium segments. Informally, Colgate’s rule of thumb was
that the market share of each brand in these two segments had to exceed 4 percent
because experience showed that distribution drops off exponentially at lower market
shares.

At the same time, Colgate was concerned about an anticipated 18 percent price
rollback on Procter & Gamble’s Crest Complete. Colgate wanted to assess the
impact of the possible price cut on existing market shares and to decide on a suitable
response, in terms of both its pricing of existing products and its introduction of the
new product.

The Study
The company had designed and conducted a conjoint study to assist in its product line
pricing decision. Data for the national study were gathered through personal inter-
views with 510 adults who were the primary shoppers for their households and who
had purchased a non-electric toothbrush in the previous six months. Complete,
usable responses were obtained from 484 of these respondents in a three-part question-
naire. The first part asked people about their preferred toothbrushes and obtained infor-
mation about their shopping behavior. The second part was a conjoint exercise that

�This is an abridged version of an original case written by Professor Kusum Ailawadi of Dartmouth College
and is used with permission.

370 Chapter 9 Heuristic Solutions with the Evolutionary Solver



formed the core of the study. The final section contained some basic demographic
questions.

In the conjoint exercise, consumers were shown a simulated display containing 11
existing toothbrush brands that accounted for approximately 70 percent of the market,

EXHIBIT 9.1 Wave Concept Statement
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along with the new Colgate Wave. The display was configured to resemble shelf dis-
plays in actual stores and the toothbrushes were shown in their normal packaging, with
prices clearly marked. (At the beginning of the interview, respondents were asked
what kind of store they usually purchased toothbrushes at—such as discount stores/
mass merchandisers, drug/grocery stores, etc. The prices they were subsequently
shown were consistent with the outlets they shopped at—lower prices for those shop-
ping at discount and mass merchandisers and higher prices for those shopping at drug/
grocery stores.) Respondents were free to pick up and examine each product if they
wished. Respondents were initially shown this display with prices for each toothbrush
set at 24 percent below market level and were asked to select the brand that they would
buy. Once the respondent made a choice, the price of the chosen item was raised by
6 percent while prices of all others remained constant. Then, the respondent was
asked to make a choice again. Prices for each brand were varied from 24 percent
below market level to 24 percent above market level, in 6 percent increments. The
choice process was repeated until the respondent had gone through all brands at all
the price levels, or would not buy any brand at the prices shown, or refused to continue
with the exercise. The result was a matrix of choices made for brands at up to nine
different price levels. Not all respondents had the same number of choices because
they could opt out earlier saying, “All prices are too high.”

These choices were used as inputs to a proprietary model that estimated each
respondent’s part-worth utilities (on a scale of 1000) for each brand and price level.
These utilities, along with demographic information for each respondent, made up
the input data for the model. Given a price scenario, the model calculated market
shares from the data on utilities. The case appendix provides a description of the
Excel workbook containing the model.

The actual market prices and market shares of the 11 existing brands in the study,
along with the market price being planned for Colgate Wave, are listed in the table
below. In this table, market shares have been re-scaled from their original values for
the entire US market so that they add up to 100 percent for the 11 brands included
in the study. These 11 brands accounted for anticipated sales of roughly 300 million
toothbrushes in 1996.

Brand Price Share: %

Colgate Wave 2.99
Colgate Plus 2.14 18.10
Colgate Classic 0.99 2.90
Colgate Total 2.69 6.79
Crest Complete 2.54 12.70
Oral-B Advantage 2.99 10.81
Oral-B Indicator 2.39 12.09
Store brands (Rite Aid) 1.09 17.31
Mentadent 2.99 7.40
Aquafresh Flex Direct 2.59 2.90
Reach Plaque Sweeper 2.89 0.70
Reach Regular 2.14 8.30
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At these prices, the contribution and net profit margins for the four Colgate brands
were as follows.

Classic Plus Total Wave

Unit price 0.99 2.14 2.69 2.99
Variable cost 0.59 1.18 1.34 1.35
Contribution
margin

0.40 0.96 1.35 1.64

Case Appendix: Market Share Simulation Model (Colgate.xls)
The workbook consists of three sheets: (1) data, (2) calculations, and (3) simulation.
As the names of the sheets imply, the data sheet contains raw input data for the model,
the calculations sheet performs all the necessary calculations, and the simulation sheet
determines the final market shares for each simulation. The contents of the three sheets
are described below. A copy of the model can be downloaded from the book’s website:
http://mba.tuck.dartmouth.edu/opt/

Data
Column A contains the respondent ID for each of the 484 respondents. Columns B
through M contain the estimated utilities for each of the 12 brands in the study.
Columns O through W contain the utilities for each of the nine price levels in the
study. Column Y contains Kendall’s Tau (a measure of model fit) for each respondent.
Columns AA through AE contain some basic demographic data for the respondents.
Finally, column AF contains data on the number of toothbrushes purchased per year
by each respondent. The information on toothbrushes purchased is ultimately used to
compute the “share of toothbrushes” in the other sheets.

Calculations
Columns A through H convert actual dollar prices entered in the simulation sheet into
price levels (e.g., 24 percent below or 12 percent above market price) for which utili-
ties are available. Columns F, G, and H assign an integer to each of the nine price levels
(e.g., 24 percent below equals 14 and 24 percent above equals 22). Column E lists the
current market prices of each brand. (The market price for Wave is the super-premium
price of $2.99 used in its concept test.) Column B converts the price entered in the
simulation sheet to the closest (lower) integer between 14 and 22, corresponding to
the scale in column G. It also truncates prices at both ends. Thus, if a price is more
than 24 percent below (or above) market price in the Simulation sheet, it will be trun-
cated to 24 percent below (or above). Column C calculates the price difference as a
percentage. This information is used to interpolate price utilities between the nine dis-
crete levels used in the study.

Column J lists the respondent IDs. Columns K through V compute the total uti-
lities of each brand in the simulation, given the prices entered in the simulation sheet.
These columns pick the utilities of the appropriate brand and the appropriate integer
price level from the data sheet, and include any necessary interpolation of price utility.
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Column X lists the maximum utility across the 12 brands. If a price of 100 is entered
for Wave in the simulation sheet, Wave is left out of the calculation in Column Y.
Columns Z through AK compute 0/1 variables indexing the brand with the maximum
utility (i.e., the brand that will be chosen). These columns are summed in row 487 to
provide the total number of times that each brand is chosen in the sample of 484
respondents. The choices are weighted by each respondent’s number of toothbrushes
purchased per year (from the data sheet) to get the total number of toothbrushes of each
brand in row 488.

Simulation
Current (“Original”) market prices of each brand are listed in C9:C20. New prices for
each simulation should be entered in the yellow area (B9:B20). The resultant percen-
tage change in price is computed in D9:D20. Prices must not fall beyond the permiss-
ible range (24 percent below market price to 24 percent above market price). The limits
of the permissible ranges are shown in cells F9:G20. Although the worksheet allows
prices beyond this range in the simulation sheet, the actual prices used to calculate
utilities will be appropriately truncated in the calculation sheet. To run a simulation
without Wave in the market, enter a price of 100 for Wave. This value will cause it
to be disregarded in the prediction of choice and share.

Each brand’s predicted share of choices by the 484 respondents is computed in
B24:B35. The corresponding share of toothbrushes (choices weighted by number of
toothbrushes purchased per year) is computed in C24:C35. Cells D24:D35 contain
adjustment factors for these results. Finally, predicted shares of toothbrushes, adjusted
by these factors, appear in cells E24:E35.

The adjustment factors in cells D24:D35 bring predicted share of toothbrushes
in the base case (current prices in current market) in line with actual market shares.
That is, when current prices are placed in cells B10:B20, the adjustment factors
produce the market shares listed in the case. In order to make this calculation, the
model is run once for the base case and its predictions are saved. Then the base
case shares listed in the case are entered. The adjustment factors are calculated directly
from these figures.
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Appendix 1

Optimization Software and
Supplemental Files

A1.1. RISK SOLVER PLATFORM

Purchasers of this book may download a powerful software package called Risk Solver
Platform (RSP) that was developed by the same team that created Excel’s Solver, and
that accommodates all Excel Solver models. This book uses Risk Solver Platform for
Education (RSPE), which has all the functionality of the commercial product RSP but
with lower limits on the size of optimization problems and “educational use” water-
marks on charts. All the examples and exercises in this book can be solved within
the limits of RSPE.

If you’ve purchased this book and you are a student enrolled in a university
course, you can download and install the software and use RSPE for a full semester
(140 days) at no charge. To do this, visit www.solver.com/student, fill out the form
on this page, and click the button to register and download. To complete the form,
you’ll need two pieces of information: a Textbook Code, which is BOMS2, and a
Course Code, which your instructor can obtain from Frontline Systems, the software
developers, and give to you.1

If you’ve purchased this book for self-study but you’re not enrolled in a university
course, you have two options: (1) Visit www.solver.com and register on the forms
presented there, download and install the software, and use RSP (the full commercial
product with much higher size limits) on a free trial, which is currently limited to
15 days; or (2) Contact Frontline Systems at 775-831-0300 or info@solver.com and
request a Course Code that will allow you to use RSPE for 140 days. As long as
you’re using the software for learning rather than production use, the company’s cur-
rent policy is to routinely grant these licenses.

The software works with Excel 2003, Excel 2007 and Excel 2010, but if you are
using the 64-bit version of Excel 2010, be sure to download and run the Setup program

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1For longer-term licenses, course instructors should contact Frontline Systems at 775-831-0300 or
info@solver.com
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for 64-bit Risk Solver Platform, named RSPSetup64.exe. In all other cases, you’ll
download and run RSPSetup.exe. Running the Setup program is straightforward,
but you’ll need to pay attention to three prompts.

1. You’ll be asked for an installation password. This will be emailed to you, at the
email address you give when you fill out the registration form.

2. You’ll be asked for a license activation code. This appears in the same email as
the installation password; it determines whether you’ll be using full RSP for 15
days, RSPE for 140 days, or something else.

3. You’ll be asked whether you want to run initially as full Risk Solver Platform,
or a subset product. There are several choices, but for use with this book, the
recommended selection is Premium Solver Platform. (You can change this
selection later, using Help—About on the RSP/PSP Ribbon.)

To uninstall the software, you can either re-run RSPSetup.exe, or use the Windows
Add/Remove Programs feature.

A1.2. SUPPLEMENTAL EXCEL FILES

This book is supported by a website that contains supplementary files. The URL for
the website is http://mba.tuck.dartmouth.edu/opt/. Specifically, the website contains
a collection of Excel files corresponding to all of the spreadsheet exhibits in the book.
This collection is not intended merely for backup purposes: you are encouraged to
open these files while reading the text and to explore them carefully. This exploration
provides a hands-on feel for the examples in the text and potentially serves as a tem-
plate for other, similar problems.

A second collection of Excel files contains data sets for selected end-of-chapter
exercises and cases. The data sets are provided for situations in which it would be
tedious to enter all the data into an Excel file for the purpose of working on the
exercise.

Some of the cases contain references to an existing spreadsheet model. The web-
site also contains Excel files for these models.
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Appendix 2

Graphical Methods in Linear
Programming

We can use graphical methods to solve linear optimization problems involving two
variables. When there are two variables in the problem, we can refer to them as x1

and x2, and we can do most of the analysis on a two-dimensional graph. Although
the graphical approach does not generalize to a large number of variables, the basic
concepts of linear programming can all be demonstrated in the two-variable context.
When we run into questions about more complicated problems, we can ask, what
would this mean for the two-variable problem? Then, we can look for answers in
the two-variable case, using graphs.

Another advantage of the graphical approach is its visual nature. Graphical
methods provide us with a picture to go with the algebra of linear programming,
and the picture can anchor our understanding of basic definitions and possibilities.
For these reasons, the graphical approach provides useful background for working
with linear programming concepts.

A2.1. AN EXAMPLE

Consider the planning and scheduling problem facing a manufacturer of microwave
ovens with two models in its line—the standard and the deluxe. Each oven is
assembled from component parts and subassemblies that are produced in the mechan-
ical and electronics departments. The following table shows the number of production
hours per oven required in each department and the capacities of the three production
departments, in monthly hours.

Standard (h/oven) Deluxe (h/oven) Capacity (h/mo)

Assembly Department 4 4 560
Mechanical Department 3 2 400
Electronics Department 2 4 400

Optimization Modeling with Spreadsheets, Second Edition. Kenneth R. Baker
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The sales department believes that there will be demand for as many ovens as the
company can produce. The accounting department has determined that the variable
profit contributions are $50 for each standard and $40 for each deluxe. The problem
is to determine a production plan to maximize monthly profit contribution.

Our first step in analyzing this problem is to express it algebraically. The problem
of devising an output plan boils down to finding the best number of standard ovens and
deluxe ovens for the firm to produce in the coming month. Thus, we let

x1 ¼ number of standard ovens

x2 ¼ number of deluxe ovens

Once we determine the values of x1 and x2, the problem will be solved. Furthermore,
the criterion is to maximize the profit contribution generated by our plan. In particular,
we can write our objective function as

Maximize z ¼ 50x1 þ 40x2

where z represents the value of the objective function.
Having specified decision variables and an objective function, we turn our atten-

tion to the constraints of the problem, the limited capacities in the assembly, mechan-
ical, and electronics departments. In assembly, the number of hours consumed by a
production schedule cannot exceed the 560 hours available. We can write this require-
ment algebraically as

4x1 þ 4x2 � 560

Similarly, for the mechanical and electronics departments, we require

3x1 þ 2x2 � 400

2x1 þ 4x2 � 400

In standard form, an algebraic statement of our full model is

Maximize z ¼ 50x1 þ 40x2

subject to 4x1 þ 4x2 � 560 (A)
3x1 þ 2x2 � 400 (M)
2x1 þ 4x2 � 400 (E)

Finally, implicit in our definition of the two decision variables is the requirement that
they must both remain nonnegative (x1 � 0 and x2 � 0).

We begin the graphical analysis with the constraints. For a graphical approach, we
can work with equations more readily than inequalities, so we consider the equations
corresponding to each of the constraints in turn. For the assembly department con-
straint (A), the line 4x1 þ 4x2 ¼ 560 defines the locus of all points at which the depart-
ment is fully utilized. That is, the line represents the set of product mix combinations

378 Appendix 2 Graphical Methods in Linear Programming



(x1, x2) that consume all 560 available hours in assembly. To plot the line, note that the
x1 intercept is 140 (obtained by setting x2 ¼ 0 and solving the equation for x1).
Similarly, the x2 intercept is 140. Plotting the two intercepts, (140, 0) and (0, 140)
on a graph, and connecting the two points with a straight line, we construct the plot
shown in Figure A2.1, where the label A on the graph is used to associate this line
with the assembly hours constraint.

The line plotted in Figure A2.1 represents all combinations (x1, x2) that consume
exactly 560 hours of assembly time. Our model, however, looks for combinations that
consume no more than 560 hours. Combinations that consume fewer that 560 hours
are also admissible, and these correspond to points (x1, x2) that lie below the line.
In fact, if we consider only the points that are admissible in the assembly constraint
and that also meet the nonnegativity requirements, then we are left with the shaded
triangle shown in Figure A2.1.

Next, we plot a line corresponding to mechanical department hours, or 3x1 þ

2x2 ¼ 400, as shown in Figure A2.2 with the label M. Points on this line represent
combinations of standard and deluxe ovens that consume exactly 400 hours of mech-
anical time, and points below the line consume fewer than 400 hours. The line corre-
sponding to the mechanical department has a slope of –3/2, in comparison to the
assembly department line, which has a slope of –1. Only points that lie below both
constraint lines (and in the nonnegative region) are admissible decisions, as indicated
by the shading.

Finally, we plot a line corresponding to the electronic department limit, 2x1 þ

4x2 ¼ 400, shown in Figure A2.3 with the label E. This line has a slope of –1/2,
and again we shade the region that lies below all three of the lines, as shown in
figure. The shaded region now represents the set of all points that are admissible
decisions: They satisfy all of the constraints in our problem.

The shaded area in Figure A2.3 is called the feasible region. It is a five-sided poly-
gon containing, along its boundary or inside, all of the points that correspond to

Figure A2.1. Sketch of first
constraint.
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feasible decisions in our model. Our next step is to find the best value of the objective
function that can be achieved by a point in this feasible region.

To pursue this search, consider what happens when we set the objective function
(z) equal to a fixed value. For example, suppose z ¼ 2000. Then all points (x1, x2) that
achieve a value of 2000 in the objective function lie on the line 50x1 þ 40x2 ¼ 2000.
Furthermore, all points that achieve a value of 2000 and that are feasible in the con-
straints lie along this line and within the feasible region. Consider a second line cor-
responding to z ¼ 4000. Like the first objective function line, this one has a slope of
–5/4, so it is parallel to the first. However, it has different intercepts and lies above and
to the right of the first line, as shown in Figure A2.4. From these two lines, we can
imagine an entire family of lines, each with a slope of –5/4 and each corresponding

Figure A2.2. Sketch of
second constraint.

Figure A2.3. Sketch of
third constraint.
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to a particular value of z. Relatively larger values of z correspond to lines in this family
that lie farther above and to the right. We wish to find the largest value of z attainable in
this family and within the feasible region. A look at the figure indicates that this value
occurs at the intersection of the assembly and mechanical constraints.

We can make this result more precise by solving for the point at which the
assembly and mechanical constraints intersect. This point is (120, 20), as shown in
Figure A2.5, corresponding to a product mix of 120 standard ovens and 20 deluxe
ovens. The corresponding profit total is $6800, corresponding to the objective function
line for z ¼ 6800, labeled OF in the figure. Using graphical methods, we have found
the best value of the objective function and the decisions that generate it.

Figure A2.4. Sketch of
objective function lines.

Figure A2.5. Sketch of
optimal point.
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A2.2. GENERALITIES

The oven-manufacturing problem was merely an example, but it does illustrate the
principles of graphical solution methods for optimization. In the example, all con-
straints are of the LT (less-than) variety. This means that points on the graph are feas-
ible if they lie on or below the corresponding constraint line. On the other hand, had we
encountered GT (greater-than) constraints, the feasible points would have been found
on or above the corresponding constraint line. The other possibility, EQ (equal-to)
constraints, would force us to consider only points lying directly on the constraint line.

In our example, the criterion was to maximize the objective function. By sketch-
ing the implications for two lines, each corresponding to a particular value of the
objective function (sometimes called an iso-value line), we can begin to see a
family of related objective function lines, leading to a maximum feasible value at
one corner of the feasible region. Our objective function contained all positive coeffi-
cients, so the process of maximization led us to lines ever higher and to the right on our
graph. Had we been interested in minimization (of a function with all positive coeffi-
cients), we would have been led to lines lower and to the left of a given starting point.
For other combinations involving negative coefficients, the idea is to plot the graph of
two or three iso-value lines, in order to see where on the graph the optimum will ulti-
mately be found.

An examination of iso-value lines could reveal that there is no limit, in some
direction, to the value of the objective function. This would be the case if we were ana-
lyzing an unbounded problem. In other circumstances, attempting to delineate the
feasible region itself will reveal an infeasible problem, in which the constraints are
mutually contradictory. These two exceptional cases can therefore be identified
while carrying out the graphical analysis.

The graphical method is valuable because it produces a picture of the optimization
process. That picture may make it easier to interpret what occurs during an optimiz-
ation procedure. However, the graphical method is more difficult when there are
three dimensions and impossible when there are more than three dimensions, so we
can use it only for relatively simple cases. Nevertheless, two-dimensional examples
illustrate most of the principles of linear programming.

As an example, suppose we consider well-posed linear programs in which the
feasible region exists and in which the objective function is not unbounded. The
theory tells us that an optimum can be found at one of the corners of the feasible
region. This property is very useful, because it means that we don’t have to search
for an optimal point in the interior of the region (an area that contains an infinite
number of points.) Instead, we can limit our search to the boundary, and just to the
corner points on that boundary, which are finite in number. This is what most linear
programming codes do: They search systematically among the corner points on the
boundary of the feasible region, stopping only when an optimum has been located.

A second theoretical result tells us that we can identify an optimal corner point by
showing that its objective function value is better than those of its neighboring corner
points. Each of the corner points in our graph has two neighbors, and either of these
can be reached by moving along one of the boundaries of the feasible region. When we
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start our search at one of the corner points, only two things can happen. Either the
objective function is better than at both neighboring corners (in which case, we
have found the optimum), or one of the neighbors has a better value. In the latter
case, we move to that point and then evaluate the neighboring possibilities from the
new location. In linear programming problems, we are essentially guaranteed that
this search procedure ultimately leads to the optimum. Indeed, this approach lies at
the heart of the simplex algorithm, which is the most popular method in use today
for finding solutions to linear programming problems. (For an algebraic glimpse of
the simplex method, see Appendix 3.)
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Appendix 3

The Simplex Method

The simplex method is the algorithm most frequently used in computer programs for
solving linear programming problems. The linear solver in Excel is an implementation
of the simplex method, and the simplex method constitutes part of virtually every
successful commercial software package for optimization. In this appendix, we use
an example to illustrate the simplex method, and we comment on how the algorithm
can be adapted to special situations that arise.

A3.1. AN EXAMPLE

We use a variation of Example 2.1 to illustrate how the simplex method works. For this
purpose, we drop the wood constraint and address the following optimization problem.

Maximize z ¼ 16C þ20D þ14T
subject to

4C þ6D þ2T � 2000
3C þ8D þ6T � 2000
9C þ6D þ4T � 1440

The simplex method works not with inequalities but rather with equalities, so our first
step is to recast the constraints of the model as equations. To do so, we introduce three
additional variables that account for unused amounts of the three resources. In other
words, these variables represent the difference between the right-hand side (RHS)
and left-hand side (LHS) of the constraints, as they are posed above. The constraints
may be written as follows.

Set 1: 4C þ 6Dþ 2T þu ¼ 2000 (A3:1)
3C þ 8Dþ 6T þv ¼ 2000 (A3:2)
9C þ 6Dþ 4T þw ¼ 1440 (A3:3)

The variables u, v, and w are called slack variables: they measure the amount of slack,
or unused resource, in each constraint. These three variables, like the three original
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decision variables C, D, and T, are all considered to be nonnegative. (We assume
throughout that all variables are nonnegative.)

We also express the objective function in a parallel form, with variables on the
LHS and a number on the RHS. We include the slack variables in the following
expression, but thereafter we leave out variables with zero coefficients.

z� 16C � 20D� 14T þ 0uþ 0vþ 0w ¼ 0

In their rewritten form, the model’s constraints and objective function have two impor-
tant features. First, the constraints are expressed as equations. Equations are easier to
manipulate than inequalities, and we can apply procedures for solving systems of
equations. In other words, we’ll rely on the ability to solve three equations in three
unknowns. (If we had m constraints, we’d want to solve m equations in m unknowns.)

The second feature of our constraints, with the slack variables added, is that the
constraint equations appear in canonical form. This means that each constraint
equation contains one variable with a coefficient of 1 that does not appear in the
other equations. These variables are called basic variables; the other variables are
called nonbasic. Canonical form includes the objective function, which we express
in terms of the nonbasic variables. Put another way, the basic variables have zero coef-
ficients in the objective function when we display canonical form of the problem.

When the problem is displayed in canonical form, we can find a solution to the
system of equations by inspection. We simply set the nonbasic variables to zero and
read the solution from what remains. In our example, the solution is as follows.

u ¼ 2000

v ¼ 2000

w ¼ 1440

In terms of our original decision variables, this solution corresponds to the values C ¼
0, D ¼ 0, and T ¼ 0, for which z ¼ 0. Thus, in our initial canonical form, the slack
variables are the basic variables and the decision variables are nonbasic and zero. A
set of basic variables is said to constitute a basic feasible solution whenever the
values of all variables are nonnegative.

To test whether this basic feasible solution is optimal, we examine the objective
function equation, written here with all of the variables

z� 16C � 20D� 14T ¼ 0 (A3:1)

The value on the right-hand side represents the current value of the objective function,
which is consistent with the solution C ¼ 0, D ¼ 0, and T ¼ 0.

Next, we ask whether making any of the nonbasic variables positive would
improve the value of the objective function. All else equal, if we could increase C,
D, or T, then the value of the objective function would increase. When we are faced
with a choice of this sort, we select the variable for which the objective function
will increase the fastest, on a per-unit basis. Here, that means choosing D.
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The variable D is called the entering variable, referring to the fact that it is about
to enter the set of basic variables. As D enters, the value of z increases by 20 for each
unit of D; thus we wish to make D as large as possible. To determine how large D
can become, we return to the three equations of the first canonical form (Set 1) and
trace the implications for the other positive variables.

Consider equation (A3.1), and ignore the nonbasic variables because they are
zero. We obtain the following relationship between u and D.

u ¼ 2000� 6D

This relationship implies that u decreases as D increases and that the ceiling on D is
2000/6 ¼ 333.3. Values of D greater than 333.3 would drive u negative. Now,
consider equation (A3.2)

v ¼ 2000� 8D (A3:2)

This equation implies a ceiling on D of 2000/8 ¼ 250. Equation (A3.3) is

w ¼ 1440� 6D (A3:3)

This equation implies a ceiling of 1440/6 ¼ 240.
The idea is to make D as large as possible without driving any of the existing vari-

ables negative, which means that D can increase to 240, the minimum of the ratios. At
that point, the variable w drops to zero and becomes a nonbasic variable. Thus, there
has been a change in the set of basic variables, from the set {u, v, w} to the set {u, v,
D}. The entering variable D was selected because it had the most negative coefficient
in the objective function equation. The leaving variable w was then chosen because it
was the first variable driven to zero by increasing D. The choice of w and the entering
value of D can be determined by calculating the ratios of RHS constants to coefficients
of the entering variable in each row and identifying the smallest ratio. The minimum
ratio corresponds to the equation in which the leaving variable appears, referred to as
the pivot equation.

To reconstruct canonical form with respect to the new set of basic variables, we
must rewrite the equations so that the basic variables each appear in just one equation,
and appear with a coefficient of 1. This means that the variable D must appear in the
third equation, because u and v already appear in the other two equations. Moreover, D
must appear with a coefficient of zero in those two equations. To rewrite the equations,
we perform elementary row operations.

There are two types of elementary row operations. First, we can multiply an
equation by a constant. Multiplication by a constant does not affect the set of values
that satisfy the equation. In effect, it makes only a cosmetic change in the equation,
altering its appearance but not its information content. Second, we can add to any
equation some multiple of another equation. Addition of another equation also does
not affect the set of values that satisfy the equations.
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Thus, the first step is to divide equation (A3.3) by six. (This value, the coefficient
of the entering variable in the pivot equation, is called the pivot value.) This division
gives D a coefficient of 1

3
2

C þ Dþ
2
3

T þ
1
6

w ¼ 240 (A3:3b)

Next, we subtract six times this equation from equation (A3.1), thus eliminating D
from the equation. Similarly, we subtract eight times this equation from equation
(A3.2). Finally, for the objective function, we add 20 times this equation. In summary,
the elementary row operations are

(A3:3b) ¼ (A3:3)=6

(A3:1b) ¼ (A3:1)� 6(A3:3b)

(A3:2b) ¼ (A3:2)� 8(A3:3b)

(A3:0b) ¼ (A3:0)þ 20(A3:3b)

The second set of equations, indicated by a (b), then takes the following form.

Set 2: �5C �2T þu �1w ¼ 560 (A3:1b)

�9C þ
2
3

T þv �
4
3

w ¼ 80 (A3:2b)

3
2

C þD þ
2
3

T þ
1
6

w ¼ 240 (A3:3b)

zþ 14C �
2
3

T þ
10
3

w ¼ 4800 (A3:0b)

From equations (A3.1b)–(A3.3b) we can immediately read the values of the basic
variables (u ¼ 560, v ¼ 80, and D ¼ 240.) From equation (A3.0b) we can read the
new value of the objective function (z ¼ 4800), and as a check, we can confirm that
this value corresponds to the set of decision variables (C ¼ 0, D ¼ 240, and T ¼ 0.)
Finally, we can see that there is potential for improvement in the objective function,
as signified by the negative coefficient for T. If we increase T from this point, we
will increase the value of z.

The next iteration follows the procedure outlined above. Given that there is room
for improvement, we must identify an entering variable and a leaving variable, and
then update the canonical equations accordingly. The steps in the procedure are out-
lined in Box A3.1.

In Step 1, we observe that not all coefficients in equation (A3.0b) are positive, and
in Step 2, we note the negative coefficient of T. This value indicates that an improve-
ment is possible and that the improvement can come from increasing the value of T,
which is currently nonbasic. Because no other variable has a negative coefficient in
equation (A3.0b), T becomes the entering variable.

In Step 3, we compute two ratios, skipping equation (A3.1b) because its coeffi-
cient for T is negative. The ratios are 80/0.667 ¼ 120 in equation (A3.2b) and 240/
0.667 ¼ 360 in equation (A3.3b). The minimum thus occurs for equation (A3.2b),
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which becomes the pivot equation. This calculation indicates that T can become as
large as 120 without driving any of the current basic variables negative.

In Step 4, we create the new canonical equations with the following elementary
row operations.

(A3:2c) ¼ (A3:2b)=(2=3)

(A3:1c) ¼ (A3:1)þ 2(A3:2c)

(A3:3c) ¼ (A3:3)� (2=3)(A3:2c)

(A3:0c) ¼ (A3:0)þ (2=3)(A3:2c)

These calculations yield the third set of canonical equations.

Set 3: �32C þu þ3v �5w ¼ 800 (A3:1c)

�
27
2

C þT þ
3
2
v �2w ¼ 120 (A3:2c)

21
2

C þD �2w ¼ 160 (A3:3c)

zþ 5C þ1v þ2w ¼ 4880 (A3:0c)

When we return to Step 1, we find that the optimality conditions hold: No negative
coefficients appear in equation (A3.0c). The set of basic variables at this stage is {u, D,
T}, and the solution corresponds to D ¼ 160 and T ¼ 120. We can also read the value
of the slack variable, u ¼ 800. This value is consistent with the solution of C ¼ 0, D ¼
160, and T ¼ 120, which uses only 1200 of the 2000 available hours in the fabrication

BOX A3.1. Outline of the Simplex Method

Basic Steps in Maximization (starting from a basic feasible solution).

1. Test the current solution for optimality. If all coefficients in the objective function
are nonnegative, then stop; the solution is optimal.

2. Select the entering variable. Identify the most negative objective function coeffi-
cient, breaking ties arbitrarily. The corresponding variable is the entering variable.

3. Select the leaving variable. For each equation, calculate the ratio of right-hand side
constant to coefficient of the leaving variable, performing this calculation only for
coefficients that are positive. Identify the equation for which this ratio is minimal,
breaking ties arbitrarily. This is the pivot equation. The coefficient of the entering
variable in this equation is the pivot value.

4. Update the canonical equations. First, update the equation corresponding to the
leaving variable. Divide it through by the pivot value. Next, eliminate the entering
variable from each other equation. To do so, subtract a multiple of the new pivot
equation equal to the coefficient of the entering variable.

5. Return to Step 1.
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department. Thus, the algorithm terminates with an optimal solution, which attains an
objective function value of $4880.

The calculations required by the simplex method are normally organized in tab-
ular form, as illustrated in Figure A3.1 for our example. This layout is known as a sim-
plex tableau, and in our example, the tableau consists of four rows for each iteration,
each row corresponding to an equation of canonical form. The columns of the tableau
correspond to the decision variables, the slack variables, and the RHS constants. The
body of the tableau contains the coefficients of the equations used in the algorithm. To
the right of the tableau, in column J, we display the ratio calculations of Step 3, with
the minimum ratio flagged in column I. The figure shows all three iterations of the
procedure as an alternative representation of the three canonical equation sets: set 1,
set 2, and set 3.

A3.2. VARIATIONS OF THE ALGORITHM

The simplex method as illustrated here works for maximization problems, given that
we start with a basic feasible solution. From the starting solution, the procedure moves
inexorably toward an optimal solution because each basic feasible solution encoun-
tered is better than the previous one. The relevant theory confirms that an optimum
can be found by examining only basic feasible solutions and that improvement (suit-
ably defined) occurs at each iteration. The details of the theory, however, are beyond
the scope of this appendix (1,2).

For minimization problems, the steps would be the same, except that the
optimality condition would require that all coefficients in the objective function
must be nonpositive. The selection of the entry variable relates to the direction of

Figure A3.1. Simplex tableau.
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optimization: Negative coefficients signal the potential for improvement in a maximi-
zation problem, and positive coefficients signal the potential for improvement in a
minimization problem. The selection of the leaving variable relates only to feasibility:
The minimum ratio identifies the equation containing the leaving variable, thereby
assuring that the new set of basic variables remains nonnegative. Therefore, the selec-
tion criterion is the same for minimization and maximization. One additional feature is
worth noting. When no positive coefficients appear in the column for the entering vari-
able (that is, when there are no ratios to be formed), this pattern indicates that the sol-
ution is unbounded. In other words, by making the entering variable positive—and as
large as we wish—we generate a value of the objective function as large as we wish.
Therefore, the objective is unbounded. If Solver encounters no positive coefficients in
the column for the entering variable, it reports that the objective function is unbounded.

As described in Box A3.1, the simplex method produces an optimal solution,
provided that we can initiate it with a basic feasible solution. This is not a difficult
task when all the constraints are LT constraints and their right-hand sides are positive,
as demonstrated in the example. A slack variable is added to each constraint in order to
convert the inequality to an equation, and then all variables other than the slack vari-
ables are set equal to zero. The slack variables appear one in each constraint, and each
with a coefficient of 1, so they form a natural starting basic feasible solution. But what
happens when the problem does not come with LT constraints?

Suppose instead we have a linear programming problem in which all constraints
are equations in the original model, and in which all constraint constants are non-
negative. Now we add one variable to each equation with a coefficient of 1. These
are called artificial variables. They resemble slack variables in that they allow us
to form an initial basic feasible solution. They differ from slack variables in one
important way: Whereas slack variables may remain positive throughout the
various iterations of the simplex algorithm, and even in the optimal solution, artificial
variables must all be driven to zero to feasibly satisfy the original constraints. This
feature allows the simplex method to be implemented in two phases. In phase I,
as it is called, the objective is to minimize the sum of the artificial variables. At
the end of this phase, the solution on hand must be a basic feasible solution for the
original problem. From that solution, we enter phase II, returning to the original objec-
tive function and following the steps outlined in Box A3.1 in order to reach an
optimum.

The so-called two-phase simplex method has another feature. If phase I cannot
reach an objective function with value zero—that is, if it is impossible to drive all arti-
ficial variables to zero, then we know that no feasible solution exists. Thus, a failure of
phase I prompts Solver to display the message that it could not find a feasible solution;
it is a systematic procedure for detecting inconsistency among the constraints of a
model.

Having addressed EQ constraints, suppose now we have a problem in which all
constraints are GT constraints with RHS constants that are nonnegative. We handle
GT constraints by converting them to equations and inserting two variables, an artifi-
cial variable and a surplus variable. Just as a slack variable converts an LT constraint to
an equality by measuring the amount by which right-hand side exceeds left-hand side,
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a surplus variable converts a GT constraint to an equality by measuring the amount by
which left-hand side exceeds right-hand side. In phase I of the algorithm, we start by
using the artificial variables to make up a basic feasible solution, and we attempt
to drive them all to zero. Assuming we succeed, we may find that we have surplus
variables at positive amounts throughout phase II, wherever GT constraints are not
binding.

For example, suppose our original model contains the following GT constraints.

A1þ B1þ C1þ D1þ E1þ F1 � 1

A2þ B2þ C2þ D2þ E2þ F2 � 1

A3þ B3þ C3þ D3þ E3þ F3 � 1

A4þ B4þ C4þ D4þ E4þ F4 � 1

A5þ B5þ C5þ D5þ E5þ F5 � 1

A6þ B6þ C6þ D6þ E6þ F6 � 1

Because there are six GT constraints, we must insert six artificial variables (a1 – a6)
and six surplus variables (s1 – s6). The equations take the following form.

A1þ B1þ C1þ D1þ E1þ F1þ a1 � s1 ¼ 1

A2þ B2þ C2þ D2þ E2þ F2þ a2 � s2 ¼ 1

A3þ B3þ C3þ D3þ E3þ F3þ a3 � s3 ¼ 1

A4þ B4þ C4þ D4þ E4þ F4þ a4 � s4 ¼ 1

A5þ B5þ C5þ D5þ E5þ F5þ a5 � s5 ¼ 1

A6þ B6þ C6þ D6þ E6þ F6þ a6 � s6 ¼ 1

The first basic feasible solution contains all of the artificial variables a1 ¼ a2 ¼
. . . ¼ a6 ¼ 1. This solution is sufficient to initiate phase I. From that point on, we
can use iterations of the simplex method, as outlined in Box A3.1, to find an optimum
if one exists, or to prove that there is no feasible solution.

Although we have discussed cases in which all constraints were LT or all were EQ
or all were GT, the principles apply to the constraints individually. Thus, in any linear
programming model, we convert the constraints to equations suitable for the simplex
method by

† inserting a slack variable into each LT constraint,

† inserting an artificial variable into each EQ constraint,

† inserting an artificial variable and a surplus variable into each GT constraint.

Before doing so, we want to make sure that each constraint has a RHS value that is
nonnegative. Thus, if any constraint in the original model has a negative RHS
value, we first multiply through by –1 (and if it is an inequality, change the direction
of the inequality) before converting it to an equation.
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In summary, the variations within the simplex algorithm allow for systematic
treatment of all linear programming models. Phase I can detect infeasible sets of con-
straints, and phase II can detect unbounded objective functions. If those conditions
fail, the algorithm proceeds to an optimal solution.
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Appendix 4

Stochastic Programming

For the most part, the optimization problems covered in this book are deterministic.
In other words, parameters are assumed known, and nothing about the problem is
subject to uncertainty. In practice, problems may come to us with uncertain elements,
but we often suppress the randomness when we build an optimization model. Quite
often, this simplification is justified because the random elements in the model are
not as critical as the main optimization structure. However, it is important to know
that the techniques we develop are not limited to deterministic applications. Here,
we show how to extend the concepts of linear programming to decision problems
that are inherently probabilistic. This class of problems is generally called stochastic
programming.

A4.1. ONE-STAGE DECISIONS WITH UNCERTAINTY

We can think of stochastic programming models as generalizations of the deterministic
case. To demonstrate the relevant concepts, we examine probabilistic variations of a
simple allocation problem.

EXAMPLE A4.1 General Appliance Company

General Appliance Company (GAC) manufactures two refrigerator models. Each refrigerator
requires a specified amount of work to be done in three departments, and each department
has limited capacity. The Standard refrigerator model is sold nationwide to several retailers
who place their orders each month. In a given month, demand for the Standard model is subject
to random variation. Demand for the Deluxe model comes from a single, large retail chain which
requires delivery of 25 units each month but is willing to take more refrigerators if more can be
delivered. At current prices, the unit profit contribution is $50 for each Standard model and $30
for each Deluxe model. The data shown below summarize the parameters of the problem.
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Requirements per unit

STD DLX Hours available

Department 1 (hrs) 4 4 600
Department 2 (hrs) 3 2 400
Department 3 (hrs) 2 4 500

Profit per unit $50 $40

The Operations Manager at General Appliance would like to maximize profit contribution for
the month by choosing production quantities for the two models. B

To formulate an optimization model for this scenario, let variables STD and DLX represent
the number of Standard and Deluxe models produced (and sold). If we represent the demand for
the Standard model by X, we can formulate the optimization problem for GAC as follows.

Maximize z ¼ 50 STDþ 30 DLX

subject to

4 STDþ 4 DLX � 600

3 STDþ 2 DLX � 400

2 STDþ 4 DLX � 500

STD � X

DLX � 25

Thus, for any value of X, we can solve the optimization problem and determine the optimal pro-
duction quantities of STD and DLX.

In probability language, the possible demand scenarios are called states of nature
(or simply states), to indicate that the conditions are beyond our control. A probability
distribution lists the possible states and associates a probability with each state. (For
convenience, we’ll number the states.) In our example, we might have some market
intelligence that leads us to adopt the following probability distribution.

State 1 2 3

Demand 80 104 160
Probability 0.2 0.5 0.3

Our optimization model takes three forms, depending on which state occurs. For state
1, the optimal output mix is 80 Standard models and 70 Deluxe models. For state 2, the
optimal output mix is 104 Standard models and 44 Deluxe models. Finally, for state 3,
the optimal output mix is 116.7 Standard models and 25 Deluxe models.

If we could learn the demand state in advance, we could determine the optimal
production quantity by solving the linear program with the appropriate demand
parameter. The crux of the problem, however, is that the production decision
must be determined before demand is known. Because we decide on production
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before demand is resolved, there may be a difference between the quantity pro-
duced and the quantity sold to retailers. (In the deterministic model, this difference
does not arise because feasible production quantities are sure to be sold.) The pro-
babilistic scenario forces us to consider what happens when production and sales
don’t match.

For the purposes of our example, suppose that GAC can sell its excess inventory
through a discount channel and earn a profit contribution of $15. Now, we must dis-
tinguish between the number of items produced and the number sold in each channel,
since those can differ when demand is stochastic. Thus, we introduce the variable SS1
to represent the number of Standard models sold to retailers in state 1 and SX1 to
represent the number of excess Standard models (sold to the discounter) in state 1.
Then, our model requires two constraints.

SS1 � 80
STD� SS1� SX1 ¼ 0

If production exceeds the demand of 80, then the first constraint limits retail sales to
demand, while the second constraint sets the excess equal to the difference between
production and retail sales. On the other hand, if demand exceeds production, then
the second constraint limits sales to production. (The excess quantity will then be
zero, because retail sales are more profitable than discount sales.) We do not need
to track the excess Deluxe models because all units of the Deluxe will be sold.

A similar set of constraint pairs is required for the other states.

State 2
SS2 � 104
STD� SS2� SX2 ¼ 0

State 3
SS3 � 160
STD� SS3� SX3 ¼ 0

Finally, we must account for the profits in a consistent manner, recognizing that
sales levels depend on which state occurs. For state 1, the objective function can be
expressed as follows.

Z1 ¼ 50SS1þ 15SX1þ 30DLX

Rearranging terms

50SS1þ 15SX1þ 30DLX � Z1 ¼ 0

We next add this equality constraint to the model, as a means of defining Z1 internally.
For the other two states, we insert similar equalities.

50SS2þ 15SX2þ 30DLX � Z2 ¼ 0

50SS3þ 15SX3þ 30DLX � Z3 ¼ 0
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Guided by the theory of decision making under uncertainty, our objective is to
maximize the expected value of profit. Having accounted separately for the profit in
each state, we can compute this expected value as a probability-weighted average,
using the following formula.

z ¼ 0:2Z1þ 0:5Z2þ 0:3Z3

This expression is linear, as are all of the additional constraints, so when we include
them in our model, we still have a linear programming problem. The full spreadsheet
model is displayed in Figure A4.1. The constraints have been organized into four sets.
The first set of (three) constraints carries over from the original model and includes the
production decisions, which must be determined before the uncertainty about demand
gets resolved. The next set of four constraints corresponds to state 1, the following set
of four constraints corresponds to state 2 and the final set of four constraints corre-
sponds to state 3. The expected value of profit appears in the objective function.

Recall that the original deterministic model contained five constraints and
two variables. This new model contains 15 constraints and 11 variables, somewhat
more than in the original model. But these values depend directly on the number of
outcomes in our probability model. Had we represented demand with ten outcomes
instead of three, the model would contain 43 constraints and 25 variables.

Although we can reduce the problem size slightly by substituting for the
profit variables Z1, Z2, and Z3, the model is more transparent if the profit measure
is tracked separately for each state and then simply weighted in the objective function
to show the expected value calculation clearly. This is one of our design principles for
stochastic programming models.

Figure A4.1. Stochastic program for Example A4.1.
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A second principle is to modularize the linear programming formulation by gath-
ering together the constraints that correspond to a given state. In our example, that
meant appending three constraint modules to the basic production-hours constraints.
Because the problem is stochastic, targets that might be met in one state may lead
to surplus or shortage in another state, so we must introduce additional variables to
track the consequences.

Finally, a third principle illustrated by our example spreadsheet is that the initial
decision variables reappear in each of the modules. In particular, the production
decision variables STD and DLX occur in the relevant demand constraints within
each of the three modules.

The optimal solution to the model, which achieves an expected profit of $6360, is
displayed in Figure A4.1. The optimal production mix is 100 Standard models and 50
Deluxe models, which corresponds to none of the output mixes produced by the model
for the individual scenarios.

The production of 100 Standard models and 50 Deluxe models represents a policy
that recognizes the risks due to uncertain demand. Under state 1, we have excess
Standard models and must accept the lower profit in the discount channel for some
of our output. On the other hand, under state 3, and to some extent under state 2,
we have a shortage of Standard models and must accept the lower profit from selling
Deluxe models instead. It would be feasible to produce a larger number of Deluxe
models, and those additional models would be certain to sell. But the profit available
from this strategy would not offset the expected losses that would occur from pro-
ducing fewer Standard models because of limited resources. The need to balance
the risks arises because we have only one decision period. A two-period scenario is
discussed next.

A4.2. TWO-STAGE DECISIONS WITH UNCERTAINTY

In the one-stage model, a decision is made, and then the uncertain state is revealed.
At that point, all conditions are determined, and the economic consequences can be
computed. A more general structure is a two-stage model, which contains some oppor-
tunity to react to the uncertainty. The technical term for this structure is stochastic
programming with recourse. Again, we illustrate the principles with a modification
of Example A4.2.

EXAMPLE A4.2 General Appliance Company (continued)

Although monthly demand at GAC is uncertain, the uncertainty is resolved about half
way through the month. At that point, it is still possible to alter production plans slightly. In par-
ticular, GAC can reschedule during the last week of the month, enough to raise the available
hours in each department by 12 percent. Now, the Operations Manager faces a decision invol-
ving possible rescheduling as well as determining the output mix. B
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The addition to monthly capacity can be implemented after the demand state has been resolved.
Thus, 72 additional hours can be brought on line in department 1, 48 additional hours in depart-
ment 2, and 56 more in department 3. (The production capability might come, for example, from
an opportunity to schedule some unplanned overtime or simply by reassigning personnel.) How
does this new opportunity affect the decision?

As before, an initial production decision must be made before the demand state is
known. Should the level of demand be higher than expected, however, there is still an
opportunity to produce additional items, perhaps to fill the gap between the initial pro-
duction and the newly determined demand, or else to take advantage of the additional
capacity. In this second round of production decisions no uncertainty exists, and we
can proceed as if we were in a deterministic environment.

The analysis builds on the previous example. One new feature is an additional set
of production decisions corresponding to the second-stage. Thus, we define STD1 and
DLX1 as the Standard and Deluxe production quantities made with the additional
hours in the case of state 1. Similarly, STD2 and DLX2 represent the additional pro-
duction quantities for state 2, and STD3 and DLX3 represent the additional production
quantities for state 3.

Suppose that state 1 occurs after initial production decisions have been made. The
second-stage decision problem calls for choosing STD1 and DLX1 subject to three
resource constraints and the need to track any surplus that might occur. The module
of resource constraints takes the following form.

4 STD1þ 4 DLX1 � 72

3 STD1þ 2 DLX1 � 48

2 STD1þ 4 DLX1 � 56

Next, with the second-stage production variables defined, we can modify the
definitional constraints of the one-stage example and add the following equations
for the state 1.

STDþ STD1� SX1� SS1 ¼ 0
SS1 � 80
DLX þ DLX1 � 25

Similar constraints apply to the other states.

State 2
STDþ STD2� SX2� SS2 ¼ 0
SS2 � 104
DLX þ DLX2 � 25

State 3
STDþ STD3� SX3� SS3 ¼ 0
SS3 � 160
DLX þ DLX3 � 25
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Finally, as in the previous example, we can capture the profits in auxiliary
variables.

50SS1þ 15SX1þ 30DLX þ 30DLX1� Z1 ¼ 0

50SS2þ 15SX2þ 30DLX þ 30DLX2� Z2 ¼ 0

50SS3þ 15SX3þ 30DLX þ 30DLX3� Z3 ¼ 0

The entire model is shown in the spreadsheet of Figure A4.2. Here, again, the
model contains four modules, three of which correspond to the three demand states.
However, these are larger modules than in the one-stage example because of the
second production opportunity. For the two-stage model, we have 24 constraints
and 17 decision variables. Again, the model’s size depends on the number of states;
with ten states, our model would have 73 constraints and 45 decision variables.

Before we discuss the solution to the problem, we reiterate the three design
features shown in Figure A4.2.

† A constraint module corresponds to each state.

† The first-stage decisions appear in each of the modules corresponding to states.

† Separate accounting is done for each of the objective function components that
correspond to states.

† The objective function components are weighted by probabilities to construct
the overall expected value for the objective.

The solution displayed in Figure A4.2 has a complicated but logical pattern. The
initial production quantities are 98 Standard models and 52 Deluxe models. If state 1
occurs, the number of Standard models is already larger than demand, so additional
capacity will be devoted exclusively to 15 Deluxe models, bringing the total output
levels to 98 and 67. If state 2 occurs, the additional capacity will be used to bring
the number of Standard models up to retail demand and to add to the number of
Deluxe models, bringing the total output levels to 104 and 64. If state 3 occurs,
the additional capacity will be devoted exclusively to Standard models to the extent
available hours permit, bringing the totals to 114 and 52.

Thus, the initial production quantities leave several options open, and the optimal
plan takes one of three directions depending on the demand state. The expected profit
under the optimal plan is about $6994. By comparison, suppose we were to expand
the model in Figure A4.1 to reflect the full 112 percent capacity levels. The optimal
solution to that model (which has no recourse structure) achieves an expected profit
of only $6,952. Therefore, the ability to tailor our second-stage reactions to the sto-
chastic outcome allows us to achieve the greater profit level.

For another comparison, imagine that we could learn the demand state first and
then respond with a single production plan that had access to the incremental
12 percent capacity. For that situation, the expected profit (based on probabilities of
0.2, 0.5, and 0.3 for the three states, respectively) turns out to be $7103. It would
always be preferable to resolve uncertainty before making a production decision,
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but in this case, there is sufficient flexibility in the two-stage structure that the expected
profit is only about $109 lower for having to make the major decisions without know-
ing demand for sure. This low figure depends, of course, on the parameters of the
example, but it does suggest that the two-stage structure affords considerable flexi-
bility. Stochastic programming enables us to quantify this kind of flexibility.

A4.3. USING SOLVER

As described in Section A4.2, the optimization model for stochastic programming
with recourse can be viewed as an expanded linear program, with explicit treatment
of each random state. The expanded linear program can be developed and optimized
by running Solver. But keep in mind that our example contained essentially just five
constraints and two variables, only one of which was subject to uncertainty. Moreover,
that uncertainty was expressed in the form of a discrete probability distribution with
just three outcomes. For that small problem, the stochastic program was 24 by 17.
Stochastic programming models can become quite large, and constructing them can
be tedious and error-prone. We might wonder whether some of the modeling task
can be automated.

Risk Solver Platform has specialized capabilities for solving stochastic programs,
but to describe those capabilities, we must first examine its representation of probabil-
istic outcomes. RSP is an integrated software tool that uses probability distributions in
simulation models. A design feature in RSP is that only one simulation model can be
supported in a given workbook. Therefore, in building a stochastic programming

Figure A4.2. Stochastic program with recourse for Example A4.2.
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model, or any simulation model, we should make sure that if our workbook contains
other worksheets, they do not contain probability distributions. (By contrast, RSP
supports one optimization model per worksheet.)

Suppose, for example, that we wish to construct a cell that behaves like demand
for Standard models in Example A4.1. The relevant type of distribution in Solver is the
Discrete distribution, which we can access from the RSP ribbon via the Simulation
Model group of commands. Choose a cell to contain the demand model and select
Distributions Q Custom Q Discrete. The Discrete distribution window offers the oppor-
tunity to specify values and weights, which are equivalent to outcomes and relative
probabilities. For our example of demand for Standard refrigerators, the values
would be {80, 104, 160} and the weights would be {0.2, 0.5, 0.3}. Entering these
values produces the display shown in Figure A4.3.

By specifying the probability distribution for demand, we allow Solver to draw
samples from this distribution for the purposes of simulation. In general, a simulation
sample may not necessarily represent the relative probabilities in a distribution faith-
fully. In our example, if we draw 10 samples, we expect to obtain the value 80 about a
fifth of the time, which means twice. But in Monte Carlo sampling, we may draw the

Figure A4.3. Discrete distribution in risk solver platform.
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value 80 just once, or perhaps three times. Only in a large sample can we depend on
drawing the value 80 about 20 percent of the time. However, we can make the out-
comes conform much more closely to the given distribution by invoking Latin
Hypercube sampling. (This option can be selected by from the drop-down menu for
Options: select All Options and then select the Latin Hypercube radio button under
Sampling Method. In the same window, select All Trials as the Value to Display,
and set Trials per Simulation equal to 10.) Under Latin Hypercube sampling, a
sample of ten draws from the distribution will contain 80 twice, 104 five times, and
160 three times, conforming precisely to the frequencies in the given probability
model.

Because Solver has the capability of representing discrete probability models as
simulated outcomes, the stochastic program can be represented efficiently on a spread-
sheet. The recourse variables need only be represented once in the model. The spread-
sheet model for Example A4.2 is shown in Figure A4.4.

In the spreadsheet model, the original variables are STD and DLX, as before. The
second stage decision variables are S2 and D2, representing the quantities produced
using the 12 percent resource capability at the second stage, and SS and SX, as
before, represent the number of Standard models sold to retailers and the number of
excess Standard models (sold to discounters). These last four decision variables are
designated Recourse variables in specifying the model elements in the task pane. In
addition, the demand distribution is imbedded in cell J14.

The worksheet has only one explicit representation of the second stage, but Solver
can sample (10 times) for the value in cell J14, following the probability distribution.1

Thus, Solver actually solves the problem two times with the demand outcome of 80 in

Figure A4.4. Solver model for the stochastic program of Example A4.2.

1To obtain the optimal solution, we must set the Stochastic Transformation option on the Platform tab of
the task pane either to Deterministic Equivalent or to Automatic.
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cell J14, five times with 104, and three times with 160. The corresponding optimal sol-
utions are stored and can be retrieved by clicking on the arrows in the Tools group on
the ribbon. When the number showing between the arrows is 1, the optimal solution
corresponding to the first simulation sample is displayed. When the number showing
is 2, the second sample is displayed, and so on. By clicking through the 10 outcomes,
we can verify that three sets of decisions appear, according to the demand outcome.
These sets of decisions, taken from row 4 of the worksheet, are summarized in the
table below.

Demand STD DLX S2 D2 SS SX

80 98 52 0 15 80 18
104 98 52 6 12 104 0
160 98 52 16 0 114 0

These results match those in Figure A4.2. However, the table layout makes it clearer
that the first-stage production quantities are 98 Standard models and 52 Deluxe
models, but the second-stage quantities depend on the demand outcome.

Finally, the expected-value objective function is not explicit in the worksheet for
Solver. However, to find the optimal value of the objective function, we can go to the
drop-down menu between the two arrows in the Tools group and select Sample Mean.
In place of the simulation trial number, the letter m appears. In addition the objective
function cell and the decision variable cells also display averages over the sample
outcomes. In the case of the objective function, the mean value corresponds to the
optimal value of the transformed model, in this case, $6994.

Stochastic programming can be a powerful form of analysis. It allows us to
address issues of uncertainty instead of making deterministic simplifications. And
in the case of stochastic programming models with recourse, the solution helps us
tailor our responses to uncertain outcomes. However, there is a modeling cost for
this capability. Whereas a deterministic description allows us to meet targets exactly,
it is not possible to be as specific in a probabilistic setting. Instead, we may have to
invent variables to measure the surplus and shortage outcomes that occur when uncer-
tain factors are present. These new variables become part of a more complicated view
of the problem than we captured in the original, deterministic model. In addition, we
have to come up with a reasonable probability model for the uncertain elements of the
problem. In our example, we illustrated the use of a simple discrete distribution with
only three outcomes. In many cases, three outcomes might not be sufficient to provide
a meaningful description of the uncertainty. However, as we add outcomes to the
probability model, we expand the size of the model by requiring additional sets of
variables and constraints. Thus, accommodating even one source of uncertainty can
lead to an order of magnitude expansion in the size of the model. Modeling multiple
sources compounds this complexity. For these reasons, stochastic programming
models are still not widely used, but now that Solver can provide solutions, that situ-
ation may change.
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Investment allocation model, 93–98,

152–154
See also Portfolio optimization model

Investment portfolios, 316–320
blending models, 53
funds flow problems, 93–98, 152–154
optimization model, 316–320
portfolio variance, 318
sensitivity analysis, 152–154

Iso-value line, 382
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Kink, 297

Lagrange multiplier, 315–316
Left-hand-side (LHS), 24, 25, 27, 28, 55,

137, 315, 348
Less-than (LT) constraints, 24, 26, 54, 85,

382, 391–393
Line balancing, 354–358
Linear, 21
Linear constraints, 24–25
Linear function, 21, 22, 24
Linear programming, 22–28, 34,

86, 175
graphical methods, 377–383
modeling errors in, 53–55
sensitivity analysis, 104–144

Linear programming formulations, 21–57
allocation models, 22, 27–36, 57,

154–155, 186
alternative optima, 141–144
blending models, 22, 45–50, 57
covering models, 22, 36–45, 57
data envelopment analysis (DEA),

183–187
degeneracy, 140–144
design and setup, 25–26
layout, 26–28
linear constraints, 24–25
modeling errors in, 53–55
network models, 22, 71–103
optimization results, 28
patterns in, 144–159
product mix problem, 35
staff-scheduling problem, 41–45,

213–217
Linear solver, 22, 33, 34, 56, 255, 297–298,

299, 307, 320–327
See also Standard LP/Quadratic Engine

Linearity, 21, 27, 57, 86
Linearizations, 320–327

linearizing the absolute
value, 324–327

linearizing the maximum, 320–324
Linking constraints, 255–270

facility location problem, 261–270
fixed-cost problem, 255–260
threshold-level problem, 260–261

Local optima, 299–304, 306, 310
Log Level, 15

Logical constraint models, 251–282
fixed-cost problem, 255–260
machine-sequencing problem, 270–274
threshold-level problem, 260–261
traveling salesperson problem, 274–282

LOOKUP function, 338
Lower bounds, 132, 195, 306, 319, 344
Lower-bound constraints, 42
LT constraints. See Less-than constraints.

Machine-sequencing problem, 270–274,
346–349

Marginal value, 126–127, 132, 151
Matching problem, 227–229
Mathematical models, 1, 2
Mathematical programming problems, 21
Max Feasible Solutions parameter, 344
MAX function, 321–323, 348
Max Subproblems parameter, 344
Max Time parameter, 343, 344–345
Max Time without Improvement parameter,

344–345
Maximization problems, 312, 389,

390–391
MIN function, 337
Minimization problems, 312, 321, 390–391
Modeling errors in linear programming,

53–55
debugging, 52–54
infeasible constraints, 53–54
logic, 54–55
unbounded objective function, 54–55

Models, 1, 2–4
Modularity, 27
Multiple optima, 141–144
Mutations, 338, 341–345, 354

Network flow diagrams. See Flow diagrams
Network models, 22, 71–103

assignment models, 77
general-network models, 91–103
special-network models, 71–90, 93, 186
transportation model, 72–77
transshipment models, 81–86
with balance equations, 86–90

Nodes, 72, 84–90
Nonbasic variables, 386, 387
Nonconvex regions, 305
Nondegenerate solution, 141, 143–144
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Nonlinear models with constraints,
312–320

Nonlinear programming, 21, 244–278
linearizations, 320–327
local optima, 299–304, 306, 310
one-variable models, 298–304
portfolio optimization model, 316–320
sensitivity analysis for, 315–316
two-variable models, 307–310
with constraints, 312–320

Nonlinear regression, 339–346
Nonlinear solver, 10, 13, 15, 297, 299, 304,

306, 320–327
Nonprofit industries, 177
Nonsmooth functions, 297, 303, 322, 324,

326, 328, 337, 338
Non-Smooth Model Transformation option,

12–13, 255, 320, 323, 327, 328, 344
Normalizing conditions, 184
Normalizing constraints, 184, 191, 195

Objective, 4, 26
Objective function coefficients, 23

sensitivity analysis, 119, 138–140,
141–144

Objective functions, 4, 15, 21–28, 43, 47,
216, 255, 337–338

concave functions, 304–306
convex functions, 304–306
funds-flow models, 96
general-network models for

transformation processes, 101–102
general-network models with

transformed flow, 101–102
linear programming model, 25, 26, 55
optimal values of, 28
special-network models, 86, 92
unbounded, 53, 54–55, 391

Offspring solution, 338, 341–342
Oil refining, 98
One-dimensional problem, 312
One-input, one-output case, 176
One-stage decision with uncertainty,

395–399
One-variable nonlinear models

order-quantity example, 300–302
quantity-discount example, 302–304

Optimality message, 15, 34, 56, 301
Optimization, 1–2, 4, 8

Optimization models, 2
Order-quantity example, 300–302
Output tab, 13, 15

Parameters, 3, 24
Parent solutions, 338, 341
Part-time shifts, staff scheduling

problem, 47
Patterns, 119, 144–159

allocation model, 154–155
investment model, 152–154
in linear programming formulations,

144–159, 127–141
product portfolio model, 149–152
refinery model, 155–159
transportation model, 145–148

Pivot equation, 387, 388–389
Pivot value, 388, 389
Planning and scheduling problem, 377
Playoff scheduling problem, 229–234
Population Report, 354
Population Size parameter, 344
Portfolio, 316
Portfolio optimization model, 316–320
Portfolio variance, 318
Price, demand and profit problem, 3
Pricing example, two-variable model,

313–315
Probability distribution, 396, 402–403
Product mix problem, 35–39

sensitivity analysis, 127–135
Proportionality, 21, 23, 57
Prototype, 7

Qualitative constraints, 213
Quantity-discount example, 302–304

Range names, 2, 16
Reduced Cost column, 137, 145
Reference sets, 179, 190–193
Refinery model, 98–103, 138–141
Relaxed problem, 238
Reliable algorithm, 306–307, 319
Return, 317
Return performance, portfolio, 317
Right-hand-side (RHS), 24, 109, 114, 121,

122, 127
Risk, 317
Risk Solver Platform
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Add Constraint window, 12, 32, 36,
52, 215

Assume Non-Negative option, 13, 32, 75,
344, 353

Automatic Scaling option, 307
Automatically Select Engine box, 13
Cell Reference box, 12, 36
Change Constraint window, 36, 56
Change Objective window, 15
Constraint box, 12, 36
Engine tab, 13, 32, 40, 75, 216, 283, 306,

324, 327, 343
Integer Tolerance option, 216
Model tab, 15, 32, 33, 36, 42, 56, 75
Model window, 11
MultiStart option, 306, 337
Non-Smooth Model Transformation

option, 255, 320, 323, 327, 344
Output tab, 13, 15, 33, 34, 301
Output window, 345
Platform tab, 12, 15, 320, 323, 327, 344
Require Bounds option, 344
task pane, 11, 16, 32, 40, 42, 54, 55, 322,

326, 343
Vary Parameters Independently box, 134

Risk Solver Platform tab, 10, 11
ROUND function, 337

Scalar product, 23
Selection, 338
Sensitivity analysis, 8, 119–159

allocation example, 127–135, 138–140
investment model, 135–137
for nonlinear programming, 264–269
product mix problem, 127–135,

138–140
transportation example, 120–127,

135–138, 145–148
Sensitivity Report, 135–140

allocation example, 138–140
for nonlinear programming, 315–316
transportation example, 135–138

Sequencing problems, 270–274, 346–349
Set Cell, 55
Set-covering problem, 221–224
Set-packing problem, 224–227
Set-partitioning problem, 227–229
Shadow price, 127, 137–139, 141–142,

148, 152

Simplex tableau, 390
Slack variables, 385, 386
Smooth functions, 8–10, 299, 306
Software, 2, 7, 16
Solver (Excel), 8, 9–14

branch-and-bound procedure, 217, 242
debugging, 52–54
evolutionary solver, 10, 337–361
infeasibility message, 54
integer linear solver, 10, 213–218
linear solver, 10, 21–57
nonlinear models, 297–320
nonlinear solver, 10, 12, 297–320
Population Report, 354
Risk Solver Platform (RSP), 10, 320,

375–376
range names with, 16
unbounded objective function, 54–55
using, 9–14, 402–405
See also Sensitivity Report

Solver specification, 11–13
allocation problem, 32–33, 277
assignment problem, 80–81, 216
blending problem, 52
capacitated facility location problem,

265–266
capital budgeting problem, 218, 254
covering problem, 40
curve-fitting problem, 309, 345
data envelopment analysis (DEA), 184
debugging, 55–56
evolutionary solver, 345, 351, 352,

357, 360
fixed cost problem, 260
funds flow problem, 96
general-network models, 92, 96, 102
group assignment problem, 360
infeasibility message, 54
integer variables, 214–217
line balancing problem, 357
linearizing the absolute value, 327
linearizing the maximum, 323
machine-sequencing problem, 211, 348
MultiStart option, 306
order quantity problem, 300
playoff scheduling problem, 231
portfolio optimization problem, 319
product portfolio problem, 149
product mix problem, 36–38
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Solver specification (Continued )
qualitative constraints, 254
quantity-discount problem, 303
set-covering problem, 223
set-partitioning problem, 229
set-packing problem, 226
special network models, 85
staff-scheduling problem, 45, 214–215
stochastic programming, 402–405
transportation problem, 75, 89
transshipment problem, 84
traveling salesperson

problem, 276–282, 351
two-dimensional location

problem, 311, 352
two-variable problems, 309, 311, 314
uncapacitated facility location

problem, 269
infeasibility message, 54
unbounded message, 54–55

Solver results message, 15
Spreadsheet-based optimization, 9, 16–17
Spreadsheet models, 2, 4–7

allocation model, 31, 127, 276
assignment model, 79
blending model, 48, 51
capacitated facility location model,

264, 266
capital budgeting model, 218, 252–254
covering model, 40
curve fitting model, 308, 340
data envelopment analysis (DEA) model,

183–188
fixed-cost model, 259
funds flow model, 95, 152
general-network models, 92, 95, 101, 156
group assignment model, 360
line-balancing model, 356
linearizing the absolute value, 325
linearizing the maximum, 322
machine-sequencing model, 272, 347
one-stage decision model with

uncertainty, 398
one-variable nonlinear models, 300, 302
order quantity model, 300
portfolio optimization model, 317–319
playoff scheduling model, 231
product portfolio model, 149
product mix model, 36

quantity-discount model, 302
set-covering model, 223
set-partitioning model, 228
set-packing model, 225
staff-scheduling model, 44, 214
transportation model, 73, 89
transshipment model, 83, 120
traveling salesperson model,

276–282, 350
two-dimensional location model, 311, 352
two-stage decision model with

uncertainty, 401
two-variable models, 308, 314
uncapacitated facility location model,

267, 269
Spreadsheets, 1

advantages and disadvantages of, 9–10
conciseness, 5
flexibility, 4, 10
form and content, 4
input parameters, 6

Staff-scheduling problem, 41–45, 213–217
Standard LP/Quadratic Engine, 32, 75
Standard GRG Nonlinear Engine, 13, 297,

304–306, 320, 326
Standard Evolutionary Engine, 343
Steepest ascent method, 299
Stochastic programming, 57, 339–346

one-stage decision with uncertainty,
395–399

two-stage decision with uncertainty,
399–402

Stochastic programming with recourse,
399–402

Strategic information, 28
Structural scheme, 145
Subtours, 277
Subtour elimination constraints, 278
SUM formula, 27, 75, 80, 85
SUMIF function, 357
SUMPRODUCT function, 23

assignment models, 80
allocation model, 31
covering models, 40, 42
data envelopment analysis

(DEA), 183–184
linear programming models, 23–27
network models with balance

equations, 86
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transportation models, 74–75, 87–90
transshipment models, 83

SUMSQ function, 309

Tactical information, 28
Tardiness, 270–271, 346–347
Task pane, 11, 16, 32, 40, 42, 54, 55, 322,

326, 343
Threshold-level problem, 260–261
Tight constraints, 28
Tour, 274, 350
Tour constraints, 274–282
Trace Precedents icon, 55–56
Transformed flows, 98–103
Transportation models, 72–81, 105–112
Transportation problem, 73

sensitivity analysis, 120–127, 135–138,
145–148

Transshipment models, 81–85
Transshipment points, 82
Transshipment problem, 81
Traveling salesperson problem, 274,

349–351
Tree diagram, 239
Two-dimensional location, 310–312,

352–354
Two-stage decision model with uncertainty,

399–402
Two-variable nonlinear models, 307–312

curve fitting, 307–310, 339
pricing example, 313–315
two-dimensional location, 310–312,

352–354
Two-way tables, 134–136, 139

Unbounded objective
function, 54–55, 391

Uncapacitated facility location problem,
267–270

Uncertainty, stochastic programming, 57,
395–405

Unique optimum, 142
Upper bounds, 238, 306
Upper-bound constraints, 42
Use Automatic Scaling box, 12

Variables, 3
artificial variables, 391
auxiliary variables, 324
basic variables, 386, 387–388
binary variables, 212–213, 217–219,

222, 226, 230, 235
entering variables, 387, 388, 391
integer variables, 211–212,

215–216
in linear functions, 22–24
nonbasic variables, 386, 387
slack variables, 385, 386
See also Decision variables

Virtual input, 194
Virtual output, 194

Weighted-average blending, 50,
52–53

What-if questions, 7, 119, 139, 144

Yield gains, 93–98
Yield losses, 91–93
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