

When to Place an Order

- Not ordered soon enough
 - potential stockout
 - loss in customer service
- Order too early
 - excess inventory

 Need to balance the cost of extra inventory with the cost of a stockout
 Cost of a stockout
 Cost of a stockout
 Cost of a stockout

- 3 basic systems
 - Order Point System
 - Periodic Review System
 - MRP (for dependent demand systems)

Order Point An is order placed when the on-hand inventory reaches a predetermined level (order point) Often used with the EOQ model Must allow enough stock to satisfy <u>demand during the lead time</u> (DDLT) Order point = demand during lead time + safety stock OP = DDLT + SS

Demand is 200 units per week, the lead time is three weeks, and the safety stock is 300 units. Calculate the order point.

© 2012, 2008, 2004, 2001, 1998, 1996

OP = DDLT + SS = 200/wk x 3 weeks + 300 = 900 units Order when the inventory falls below 900 units

als Management, 7th Edition © 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 07 All Rights Rese

Demand Variation About the Average

14/1-	literes A	literen D
vveek	Item A	Item B
1	1200	400
2	1000	600
3	800	1600
4	900	1300
5	1400	200
6	1100	1100
7	1100	1500
8	700	800
9	1000	1400
10	800	1100
Total Demand	10,000	10,000
Average Demand	1000	1000
ction to Materials Management, 7 th Edition © 2 Chanman, Clive	012, 2008, 2004, 2001, 1998	8, 1996 Pearson Education

Variation about an Average

Most demand patterns are predictable

© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 0 All Rights Resc

- Most follow a normal distribution
- Pattern can be described by
 - Shape
 - Center
 - Spread

rials Management, 7th Edition

an. Clive

Dispersion

- A measure of how closely the actual demands cluster about the average
- Measure in:
 - a range (highest lowest reading)
 - mean absolute deviation (MAD) see chpt 8
 - standard deviation

Standard Deviation (sigma), σ

- 1. Calculate the deviation (difference) of each period from the average
- 2. Square each deviation
- 3. Add the squares of the deviations
- 4. Divide the sum found in step 3 by the number of periods
- 5. Calculate the square root of the value found in step 4

$$\boldsymbol{\sigma} = \sqrt{\frac{\Sigma \left(x - \overline{x} \right)^2}{n}}$$

* This is a standard feature on most calculators

ntroduction to Materials Management, 7th Edition © 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 0745 modif Chanman Cline All Rights Reserve

Calo Exa	culating th mple Prot	ne Stand Diem	dard Deviat	ion -
Period	Actual Demand	Average	Actual - Average	(Act - Ava) ²
1	1200	1000	200	40,000
2	1000	1000	0	0
3	800	1000	-200	40,000
4	900	1000	-100	10,000
5	1400	1000	400	160,000
6	1100	1000	100	10,000
7	1100	1000	-100	10,000
8	700	1000	-300	90,000
9	1000	1000	0	0
10	800	1000	-200	40,000
	10,000			400,000
sigma ⇒	400,000/10 = √4	10,000 = 200		
Introduction to Materials Arnold, Chapman, Clive	Management, 7 th Edition	© 2012, 2008, 2004, 2001	, 1998, 1996 Pearson Education, Uppe	r Saddle River, NJ 07458. All Rights Reserved.

Calculating the Standard Deviation - Example Problem Continued

Period	Actual Demand	If $\sigma = 200$ we should expect:
1	1200	
2	1000	68% of the demands to be
3	800	between 800 -1200 units
4	900	
5	1400	
6	1100	98% of the demands to be
7	1100	between 600 -1400 units
8	700	
9	1000	00.000/ of the demondence he
10	800	99.88% of the demands to be
	10,000	between 400 - 1600 units
Introduction to	o Materials Management, 7 th Edition	© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 07

Determining the Safety Stock and Order Point

- The normal curve is symmetrical about the average
- Half the time demand is greater than average
- Half the time demand is less than average
- A safety stock of zero has a service level of 50%
- The error will exceed the average by one sigma 34% of the time

ddle River, N All Rights R

Service Level (%)	Safety Factor
50	0.00
75	0.67
80	0.84
85	1.04
90	1.28
94	1.56
95	1.65
96	1.75
97	1.88
98	2.05
99	2.33
99.86	3.00
99,99	4.00

Safet St Example	ock and Order Point - Problem
If the standard carried to prov during the lead Safety factor f	d deviation is 200 units, what safety stock should be vide a service level of 90%? If the expected demand d time is 1500 units, what is the order point? or 90% service level = 1.28 (from table)
Safety stock	= sigma x safety factor = 200 x 1.28 = 256 units
Order point	= DDLT + SS = 1500 + 256 = 1756 units
Introduction to Materials Management, Arnold, Chapman, Clive	7 th Edition © 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved.

Safety Stock - Example Problem

What is the safety stock for an item with a demand of 80 units per month, a lead time of one month and standard deviation of 20 units?

Management wants a service level of 96%.

ent 7t Edition

© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 07 All Rights Rese

nt. 7th Edition

© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Edu

Safety Stock and Order Point -Example Problem

Suppose mangement stated that it could only tolerate one stockout per year for a specific item.

For this particular item, the annual demand is 52,000 units, it is ordered in quantities of 2600, and the standard deviation of demand during lead time is 100 units. The lead time is one week. Calculate:

© 2012, 2008, 2004, 2001, 1998, 1996

a. Number of orders per year.

ent, 7ª Editio

- b. Service level.
- c. Safety stock.

d. Order point.

Safety Stock and Order Point - Example Problem Solution
c. From the table of safety factors Safety factor (95%) = 1.65
Safety Stock = safety factor x sigma = 1.65 x 100 = 165 units
d. DDLT = (52,000 / 52 weeks per yr) = 1000 units
Order point = DDLT + SS = $1000 + 165$
ntroduction to Meteriale Management, 7 ^a Edition Arrold, Clapman, Che

Different Forecast and Lead Time Intervals

ment. 7th Edition

- Many items in inventory have different lead times
- Sales records and forecasts are usually made on a weekly or monthly interval
- The standard deviation will change as the interval changes
- the longer the interval the higher the variationNeed to adjust the standard deviation for the
- lead time

© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 07-All Rights Reser

Perpetual Inventory Record System

			QUANTITY 500		POINT 100	
DATE	ORDERED	RECEIVED	ISSUED	ON HAND	ALLOCATED	AVAILABLE
01 02 03 04 05	500	500	400	500 500 500 100 600	400 0 0	500 100 100 100 600

© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, All Rights

Economic Order Quantity

roduction to Materials Management, 7th Edition old, Chapman, Clive

oduction to Materials Manag old, Chapman, Clive

- quantity ordered is <u>constant</u>
- the time between orders varies
- Periodic Review System
 - the time between orders is constant

© 2012, 2008, 2004, 2001, 1998, 1996 P

• the order quantity varies

Used when:

uent 7tt Edition

- there are many small issues from stock e.g. grocery stores
- many items are ordered from one source
- many items are ordered together to fill a truck or a production run

© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 0 All Rights Res

Introduction to Materials Management, 7th Edition © 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 0. Arnold, Chapman, Clive All Rights Rese

to improve customer service

- store goods near the customer
- to reduce transportation costs

© 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 074 All Rights Reserv

- allow full truckloads
- to reduce production costs
 - economic lot sizes

ament 7tt Edition

Centralized Systems

- All forecasts and orders are determined at the central supply
- Stock is 'pushed' into the distribution centers
- Attempt to balance the needs of all the centers
- Coordinates: factory, central supply and distribution centers
- Lacks the ability to respond to local needs

 and to Address Assessment, 2⁺ Calca

 O212, 2009, 2004, 1999, 1996 Pearson Education, Upper Saddlef

Distribution Requirements Planning

- Forecasts when demands will occur
- Allows planning by the factory and central supply
- Uses MRP logic

ment. 7th Edition

 <u>Planned order releases</u> from the distribution centers become the <u>gross</u> <u>requirements</u> of central supply

> © 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 074 All Rights Reserv

DRP - Example Problem **Distribution Center A** Transit Time = 2 weeks Order Quantity = 100 units

nt, 7ª Editis

In Transit			100			
Projected Available	50					
Planned Order Release						
Transit Time = 1 weeks Order Quantity = 200 unit Week	s	1	2	3	4	5
Transit Time = 1 weeks Order Quantity = 200 unit Week Gross Requirements	s	1 95	2	3	4	5
Transit Time = 1 weeks Order Quantity = 200 unit Week Gross Requirements In Transit	s	1 95	2 85	3 100	4 70	5 50
Transit Time = 1 weeks Order Quantity = 200 unit Week Gross Requirements In Transit Projected Available	s 100	1 95	2 85	3 100	4 70	5

ddle River, All Rights

DRP - Example Problem Solution

Distribution Center A

*on to Material*s apman, Clive

Transit Time = 2 weeks						
Order Quantity = 100 units						
Week		1	2	3	4	5
Gross Requirements		25	30	55	50	30
In Transit			100			
Projected Available	50	25	95	40	90	60
Planned Order Release			100			

Distribution Center B

Gross Poquiromonts		05	2	100	70	50
In Transit		95	65	100	70	50
Projected Available	100	5	120	20	150	100
Planned Order Release		200		200		

DRP - Example Problem Solution

Central Supply

Week		1	2	3	4	5
Gross Requirements		200	100	200		
Scheduled Receipts						
Projected Available	400	200	100	400		
Planned Order Release		500				

Central Supply needs to place an order for 500 now, scheduled to be received in week 3

ntroduction to Materials Management, 7th Edition © 2012, 2008, 2004, 2001, 1998, 1996 Pearson Education, Upper Saddle River, NJ 0741 mold, Chapman, Dive All Rights Reserv